-
Notifications
You must be signed in to change notification settings - Fork 3.6k
Description
Proposed refactor
Remove deprecated code after the 1.6 release.
NOTE: Please pick up a single item from the list (by commenting here in the issue) - and if there are no conflicts - we will happily assign you and put your name in front of the item in the list.
Please note that unless mentioned, the classes are importable from pytorch_lightning, example: from pytorch_lightning import Trainer.
-
LightningModule.summarize-> remove LightningModule.summarize #12559 -
pytorch_lightning.core.memory.LayerSummary-> Remove deprecated LayerSummary and ModelSummary #12593 -
pytorch_lightning.core.memory.ModelSummary-> Remove deprecated LayerSummary and ModelSummary #12593 -
pytorch_lightning.core.memory.get_gpu_memory_map-> Remove pytorch_lightning.core.memory.get_gpu_memory_map #12644 -
pytorch_lightning.core.memory.get_memory_profile-> Remove deprecated get_memory_profile #12659 -
LightningModule.model_size-> remove deprecatedmodel_sizefrom LightningModule #12641 -
LightningDataModule.train_transforms-> Remove train_transforms in LightningDataModule #12662 -
LightningDataModule.val_transforms-> Remove the deprecatedLightningDataModule.val_transforms#12763 -
LightningDataModule.test_transforms-> Remove the deprecatedLightningDataModule.test_transforms#12773 -
LightningDataModule.size-> Remove the deprecated LightningDataModule.size, LightningDataModule.dims #12780 -
LightningDataModule.dimsandLightningDataModule(dims=...)-> Remove the deprecated LightningDataModule.size, LightningDataModule.dims #12780 -
LightningModule.get_progress_bar_dict-> Remove the deprecated get_progress_bar_dict #12839 -
Trainer.progress_bar_dict-> Remove the deprecated get_progress_bar_dict #12839 -
Trainer(prepare_data_per_node=...)-> Remove deprecatedprepare_data_per_nodeinTrainer#12536 -
Trainer(stochastic_weight_avg=...)-> Remove deprecatedstochastic_weight_avgargument fromTrainer#12535 -
Trainer(terminate_on_nan=...)andTrainer.terminate_on_nan-> Remove deprecated 'terminate_on_nan' argument from Trainer #12553 -
LightningModule.on_{train,val,test,predict}_dataloader-> Remove the deprecatedon_{train,val,test,predict}_dataloaderhooks #13033 -
pytorch_lightning.loggers.TestTubeLogger-> Remove deprecatedTestTubeLogger#12859 -
pytorch_lightning.Callback.on_keyboard_interrupt-> Remove deprecatedon_keyboard_interrupt#13438 -
Trainer(process_position=...)-> Removedprocess_positionargument from Trainer Class #13071 -
Trainer(flush_logs_every_n_steps=...)-> Removedflush_logs_every_n_stepsargument from Trainer #13074 -
LightningModule.add_to_queue-> @shenoynikhil -
LightningModule.get_from_queue-> @shenoynikhil -
Trainer(progress_bar_refresh_rate=...)-> Remove deprecatedprogress_bar_refresh_ratefrom Trainer constructor #12514 -
LightningLoggerBase.closeandpytorch_lightning.loggers.LoggerCollection.close-> Remove the deprecatedlogger.close#13149 -
pytorch_lightning.distributed.dist.LightningDistributedRemove deprecatedLightningDistributed#13549 -
Trainer(checkpoint_callback=...)-> Remove deprecatedcheckpoint_callbackflag in Trainer #13027 - Passing
dataloader_idxtoon_train_batch_startofpytorch_lightning.CallbackandLightningModule-> Remove deprecateddataloader_idxargument fromon_train_batch_start/endcallback hooks #12769 -
LightningModule.on_post_move_to_deviceRemove deprecatedLightningModule.on_post_move_to_device#13548 -
pytorch_lightning.core.decorators.parameter_validationRemove deprecatedpytorch_lightning.core.decorators.parameter_validation#13514 -
Trainer(accelerator="ddp_spawn")Remove support for passing strategy strings to accelerator #12696 -
Trainer(plugins="ddp_spawn")Remove support for passing strategy name to plugins #12700 -
Trainer(weights_summary="full"),Trainer(weights_summary=None),Trainer.weights_summary-> Removed deprecatedweights_summaryargument from Trainer #13070 -
Trainer(log_gpu_memory=...)-> Remove deprecated automatic logging of gpu metrics #12657 -
Trainer.slurm_job_idRemove deprecatedTrainer.slurm_job_id#13459 -
pytorch_lightning.callbacks.gpu_stats.GPUStatsMonitor-> Remove deprecatedGPUStatsMonitorcallback #12554 -
pytorch_lightning.callbacks.gpu_stats.XLAStatsMonitor-> Remove deprecatedXLAStatsMonitor#12688 -
pytorch_lightning.callbacks.progress.ProgressBar-> Remove the deprecatedpl.callbacks.ProgressBar#12658 -
Trainer(max_steps=None)andTrainer.fit_loop.max_steps = NoneRemove deprecatedmax_steps=None#13591 -
pytorch_lightning.callbacks.lr_monitor.LearningRateMonitor.lr_sch_names-> Remove pytorch lightning.callbacks.lr monitor.learning rate monitor.lr_sch_names #13353 -
KubeflowEnvironment.is_using_kubeflow, LSFEnvironment.is_using_lsf, TorchElasticEnvironment.is_using_torchelasticRemove deprecated ClustertEnvironment methods #13458 -
pytorch_lightning.overrides.distributed.IndexBatchSamplerWrapper.batch_indicesRemoved deprecatedpytorch_lightning.overrides.distributed.IndexBatchSamplerWrapper.batch_indices#13565 -
pytorch_lightning.strategies.SingleDeviceStrategy.post_dispatchRemove deprecatedStrategy.post_dispatch#13461 -
pytorch_lightning.trainer.connectors.logger_connector.logger_connector.LoggerConnector.gpu_metrics
Feel free to cross-check from the test file to ensure that the relevant test fails now (since it's no more deprecated and instead removed).
Pitch
All the deprecated features we have are tested here:
If you are interested in taking care of one item, post a comment here asking to take it. This avoids multiple people working on the same thing.
Additional context
See pull requests linked in #10312 for examples on how to contribute :)
Or a recent pull request #12514.
If you enjoy Lightning, check out our other projects! ⚡
-
Metrics: Machine learning metrics for distributed, scalable PyTorch applications.
-
Lite: enables pure PyTorch users to scale their existing code on any kind of device while retaining full control over their own loops and optimization logic.
-
Flash: The fastest way to get a Lightning baseline! A collection of tasks for fast prototyping, baselining, fine-tuning, and solving problems with deep learning.
-
Bolts: Pretrained SOTA Deep Learning models, callbacks, and more for research and production with PyTorch Lightning and PyTorch.
-
Lightning Transformers: Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.