Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions tensorflow_addons/layers/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ py_library(
"normalizations.py",
"optical_flow.py",
"poincare.py",
"polynomial.py",
"sparsemax.py",
"tlu.py",
"wrappers.py",
Expand All @@ -24,6 +25,20 @@ py_library(
],
)

py_test(
name = "polynomial_test",
size = "small",
srcs = [
"polynomial_test.py",
],
main = "polynomial_test.py",
python_version = "PY3",
srcs_version = "PY2AND3",
deps = [
":layers",
],
)

py_test(
name = "gelu_test",
size = "small",
Expand Down
2 changes: 2 additions & 0 deletions tensorflow_addons/layers/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
| normalizations | @smokrow | [email protected] |
| opticalflow | @fsx950223 | [email protected] |
| poincare | @rahulunair | [email protected] |
| polynomial | @tanzheny | [email protected]
| sparsemax | @AndreasMadsen | [email protected] |
| tlu | @AakashKumarNain | [email protected] |
| wrappers | @seanpmorgan | [email protected] |
Expand All @@ -21,6 +22,7 @@
| normalizations | InstanceNormalization | https://arxiv.org/abs/1607.08022 |
| opticalflow | CorrelationCost | https://arxiv.org/abs/1504.06852 |
| poincare | PoincareNormalize | https://arxiv.org/abs/1705.08039 |
| polynomial | PolynomialCrossing | https://arxiv.org/pdf/1708.05123 |
| sparsemax| Sparsemax | https://arxiv.org/abs/1602.02068 |
| tlu | TLU | https://arxiv.org/abs/1911.09737 |
| wrappers | WeightNormalization | https://arxiv.org/abs/1602.07868 |
Expand Down
1 change: 1 addition & 0 deletions tensorflow_addons/layers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
from tensorflow_addons.layers.normalizations import InstanceNormalization
from tensorflow_addons.layers.optical_flow import CorrelationCost
from tensorflow_addons.layers.poincare import PoincareNormalize
from tensorflow_addons.layers.polynomial import PolynomialCrossing
from tensorflow_addons.layers.sparsemax import Sparsemax
from tensorflow_addons.layers.tlu import TLU
from tensorflow_addons.layers.wrappers import WeightNormalization
162 changes: 162 additions & 0 deletions tensorflow_addons/layers/polynomial.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implements Polynomial Crossing Layer."""

import tensorflow as tf
from typeguard import typechecked

from tensorflow_addons.utils import types


@tf.keras.utils.register_keras_serializable(package="Addons")
class PolynomialCrossing(tf.keras.layers.Layer):
"""Layer for Deep & Cross Network to learn explicit feature interactions.

A layer that applies feature crossing in learning certain explicit
bounded-degree feature interactions more efficiently. The `call` method
accepts `inputs` as a tuple of size 2 tensors. The first input `x0` should be
the input to the first `PolynomialCrossing` layer in the stack, or the input
to the network (usually after the embedding layer), the second input `xi`
is the output of the previous `PolynomialCrossing` layer in the stack, i.e.,
the i-th `PolynomialCrossing` layer.

The output is y = x0 * (W .* x) + bias + xi, where .* designates dot product.

References
See [R. Wang](https://arxiv.org/pdf/1708.05123.pdf)

Example:

```python
# after embedding layer in a functional model:
input = tf.keras.Input(shape=(None,), name='index', dtype=tf.int64)
x0 = tf.keras.layers.Embedding(input_dim=32, output_dim=6))
x1 = PolynomialCrossing(projection_dim=None)((x0, x0))
x2 = PolynomialCrossing(projection_dim=None)((x0, x1))
logits = tf.keras.layers.Dense(units=10)(x2)
model = tf.keras.Model(input, logits)
```

Arguments:
projection_dim: project dimension. Default is `None` such that a full
(`input_dim` by `input_dim`) matrix is used.
use_bias: whether to calculate the bias/intercept for this layer. If set to
False, no bias/intercept will be used in calculations, e.g., the data is
already centered.
kernel_initializer: Initializer instance to use on the kernel matrix.
bias_initializer: Initializer instance to use on the bias vector.
kernel_regularizer: Regularizer instance to use on the kernel matrix.
bias_regularizer: Regularizer instance to use on bias vector.

Input shape:
A tuple of 2 (batch_size, `input_dim`) dimensional inputs.

Output shape:
A single (batch_size, `input_dim`) dimensional output.
"""

@typechecked
def __init__(
self,
projection_dim: int = None,
use_bias: bool = True,
kernel_initializer: types.Initializer = "truncated_normal",
bias_initializer: types.Initializer = "zeros",
kernel_regularizer: types.Regularizer = None,
bias_regularizer: types.Regularizer = None,
**kwargs,
):
super(PolynomialCrossing, self).__init__(**kwargs)

self.projection_dim = projection_dim
self.use_bias = use_bias
self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
self.bias_initializer = tf.keras.initializers.get(bias_initializer)
self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
self.bias_regularizer = tf.keras.regularizers.get(bias_regularizer)

self.supports_masking = True

def build(self, input_shape):
if not isinstance(input_shape, (tuple, list)) or len(input_shape) != 2:
raise ValueError(
"Input shapes must be a tuple or list of size 2, "
"got {}".format(input_shape)
)
last_dim = input_shape[-1][-1]
if self.projection_dim is None:
kernel_shape = [last_dim, last_dim]
else:
if self.projection_dim != last_dim:
raise ValueError(
"The case where `projection_dim` != last "
"dimension of the inputs is not supported yet, got "
"`projection_dim` {}, and last dimension of input "
"{}".format(self.projection_dim, last_dim)
)
kernel_shape = [last_dim, self.projection_dim]
self.kernel = self.add_weight(
"kernel",
shape=kernel_shape,
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
dtype=self.dtype,
trainable=True,
)
if self.use_bias:
self.bias = self.add_weight(
"bias",
shape=[last_dim],
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
dtype=self.dtype,
trainable=True,
)
self.built = True

def call(self, inputs):
if not isinstance(inputs, (tuple, list)) or len(inputs) != 2:
raise ValueError(
"Inputs to the layer must be a tuple or list of size 2, "
"got {}".format(inputs)
)
x0, x = inputs
outputs = x0 * tf.matmul(x, self.kernel) + x
if self.use_bias:
outputs = tf.add(outputs, self.bias)
return outputs

def get_config(self):
config = {
"projection_dim": self.projection_dim,
"use_bias": self.use_bias,
"kernel_initializer": tf.keras.initializers.serialize(
self.kernel_initializer
),
"bias_initializer": tf.keras.initializers.serialize(self.bias_initializer),
"kernel_regularizer": tf.keras.regularizers.serialize(
self.kernel_regularizer
),
"bias_regularizer": tf.keras.regularizers.serialize(self.bias_regularizer),
}
base_config = super(PolynomialCrossing, self).get_config()
return dict(list(base_config.items()) + list(config.items()))

def compute_output_shape(self, input_shape):
if not isinstance(input_shape, (tuple, list)):
raise ValueError(
"A `PolynomialCrossing` layer should be called " "on a list of inputs."
)
return input_shape[0]
59 changes: 59 additions & 0 deletions tensorflow_addons/layers/polynomial_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for PolynomialCrossing layer."""

import numpy as np
import tensorflow as tf

from tensorflow_addons.layers.polynomial import PolynomialCrossing
from tensorflow_addons.utils import test_utils


@test_utils.run_all_in_graph_and_eager_modes
class PolynomialCrossingTest(tf.test.TestCase):
# Do not use layer_test due to multiple inputs.

def test_full_matrix(self):
x0 = np.asarray([[0.1, 0.2, 0.3]]).astype(np.float32)
x = np.asarray([[0.4, 0.5, 0.6]]).astype(np.float32)
layer = PolynomialCrossing(projection_dim=None, kernel_initializer="ones")
output = layer([x0, x])
self.evaluate(tf.compat.v1.global_variables_initializer())
self.assertAllClose(np.asarray([[0.55, 0.8, 1.05]]), output)

def test_invalid_proj_dim(self):
with self.assertRaisesRegexp(ValueError, r"is not supported yet"):
x0 = np.random.random((12, 5))
x = np.random.random((12, 5))
layer = PolynomialCrossing(projection_dim=6)
layer([x0, x])

def test_invalid_inputs(self):
with self.assertRaisesRegexp(ValueError, r"must be a tuple or list of size 2"):
x0 = np.random.random((12, 5))
x = np.random.random((12, 5))
x1 = np.random.random((12, 5))
layer = PolynomialCrossing(projection_dim=6)
layer([x0, x, x1])

def test_serialization(self):
layer = PolynomialCrossing(projection_dim=None)
serialized_layer = tf.keras.layers.serialize(layer)
new_layer = tf.keras.layers.deserialize(serialized_layer)
self.assertEqual(layer.get_config(), new_layer.get_config())


if __name__ == "__main__":
tf.test.main()