Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions examples/a2c/a2c_atari.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,9 @@ def main(cfg: "DictConfig"): # noqa: F821
critic_coef=cfg.loss.critic_coef,
)

# use end-of-life as done key
loss_module.set_keys(done="eol", terminated="eol")

# Create optimizer
optim = torch.optim.Adam(
loss_module.parameters(),
Expand Down
68 changes: 38 additions & 30 deletions examples/a2c/utils_atari.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,31 +3,30 @@
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import gymnasium as gym
import numpy as np
import torch.nn
import torch.optim
from tensordict.nn import TensorDictModule
from torchrl.data import CompositeSpec
from torchrl.data import CompositeSpec, UnboundedDiscreteTensorSpec
from torchrl.data.tensor_specs import DiscreteBox
from torchrl.envs import (
CatFrames,
default_info_dict_reader,
DoubleToFloat,
EnvCreator,
ExplorationType,
GrayScale,
GymEnv,
NoopResetEnv,
ParallelEnv,
Resize,
RewardClipping,
RewardSum,
StepCounter,
ToTensorImage,
Transform,
TransformedEnv,
VecNorm,
)
from torchrl.envs.libs.gym import GymWrapper
from torchrl.modules import (
ActorValueOperator,
ConvNet,
Expand All @@ -43,43 +42,52 @@
# --------------------------------------------------------------------


class EpisodicLifeEnv(gym.Wrapper):
def __init__(self, env):
"""Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. It helps value estimation.
"""
gym.Wrapper.__init__(self, env)
self.lives = 0
class EndOfLifeTransform(Transform):
"""Registers the end-of-life signal from a Gym env with a `lives` method.
def step(self, action):
obs, rew, done, truncate, info = self.env.step(action)
lives = self.env.unwrapped.ale.lives()
info["end_of_life"] = False
if (lives < self.lives) or done:
info["end_of_life"] = True
self.lives = lives
return obs, rew, done, truncate, info
Done by DeepMind for the DQN and co. It helps value estimation.
"""

def reset(self, **kwargs):
reset_data = self.env.reset(**kwargs)
self.lives = self.env.unwrapped.ale.lives()
return reset_data
def _step(self, tensordict, next_tensordict):
lives = self.parent.base_env._env.unwrapped.ale.lives()
end_of_life = torch.tensor(
[tensordict["lives"] < lives], device=self.parent.device
)
end_of_life = end_of_life | next_tensordict.get("done")
next_tensordict.set("eol", end_of_life)
next_tensordict.set("lives", lives)
return next_tensordict

def reset(self, tensordict):
lives = self.parent.base_env._env.unwrapped.ale.lives()
end_of_life = False
tensordict.set("eol", [end_of_life])
tensordict.set("lives", lives)
return tensordict

def transform_observation_spec(self, observation_spec):
full_done_spec = self.parent.output_spec["full_done_spec"]
observation_spec["eol"] = full_done_spec["done"].clone()
observation_spec["lives"] = UnboundedDiscreteTensorSpec(
self.parent.batch_size, device=self.parent.device
)
return observation_spec


def make_base_env(
env_name="BreakoutNoFrameskip-v4", frame_skip=4, device="cpu", is_test=False
):
env = gym.make(env_name)
if not is_test:
env = EpisodicLifeEnv(env)
env = GymWrapper(
env, frame_skip=frame_skip, from_pixels=True, pixels_only=False, device=device
env = GymEnv(
env_name,
frame_skip=frame_skip,
from_pixels=True,
pixels_only=False,
device=device,
)
env = TransformedEnv(env)
env.append_transform(NoopResetEnv(noops=30, random=True))
if not is_test:
reader = default_info_dict_reader(["end_of_life"])
env.set_info_dict_reader(reader)
env.append_transform(EndOfLifeTransform())
return env


Expand Down
2 changes: 1 addition & 1 deletion examples/ppo/ppo_atari.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ def main(cfg: "DictConfig"): # noqa: F821
)

# use end-of-life as done key
loss_module.set_keys(done="eol")
loss_module.set_keys(done="eol", terminated="eol")

# Create optimizer
optim = torch.optim.Adam(
Expand Down
18 changes: 9 additions & 9 deletions examples/ppo/utils_atari.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,19 +3,18 @@
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import gymnasium as gym
import torch.nn
import torch.optim
from tensordict.nn import TensorDictModule
from torchrl.data import CompositeSpec
from torchrl.data.tensor_specs import DiscreteBox, UnboundedDiscreteTensorSpec
from torchrl.envs import (
CatFrames,
default_info_dict_reader,
DoubleToFloat,
EnvCreator,
ExplorationType,
GrayScale,
GymEnv,
NoopResetEnv,
ParallelEnv,
Resize,
Expand All @@ -27,7 +26,6 @@
TransformedEnv,
VecNorm,
)
from torchrl.envs.libs.gym import GymWrapper
from torchrl.modules import (
ActorValueOperator,
ConvNet,
Expand Down Expand Up @@ -78,15 +76,17 @@ def transform_observation_spec(self, observation_spec):
def make_base_env(
env_name="BreakoutNoFrameskip-v4", frame_skip=4, device="cpu", is_test=False
):
env = gym.make(env_name)
env = GymWrapper(
env, frame_skip=frame_skip, from_pixels=True, pixels_only=False, device=device
env = GymEnv(
env_name,
frame_skip=frame_skip,
from_pixels=True,
pixels_only=False,
device=device,
)
env = TransformedEnv(env, EndOfLifeTransform())
env = TransformedEnv(env)
env.append_transform(NoopResetEnv(noops=30, random=True))
if not is_test:
reader = default_info_dict_reader(["end_of_life"])
env.set_info_dict_reader(reader)
env.append_transform(EndOfLifeTransform())
return env


Expand Down