-
Notifications
You must be signed in to change notification settings - Fork 14.5k
[libc][math] Refactor exp implementation to header-only in src/__support/math folder. #148091
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
@llvm/pr-subscribers-libc Author: Muhammad Bassiouni (bassiounix) ChangesPart of #147386 in preparation for: https://discourse.llvm.org/t/rfc-make-clang-builtin-math-functions-constexpr-with-llvm-libc-to-support-c-23-constexpr-math-functions/86450 @lntue Patch is 69.59 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/148091.diff 12 Files Affected:
diff --git a/libc/shared/math.h b/libc/shared/math.h
index 4ddc29c7ae834..69783aecc7864 100644
--- a/libc/shared/math.h
+++ b/libc/shared/math.h
@@ -12,5 +12,6 @@
#include "libc_common.h"
#include "math/expf.h"
+#include "math/exp.h"
#endif // LLVM_LIBC_SHARED_MATH_H
diff --git a/libc/shared/math/exp.h b/libc/shared/math/exp.h
new file mode 100644
index 0000000000000..7cdd6331e613a
--- /dev/null
+++ b/libc/shared/math/exp.h
@@ -0,0 +1,23 @@
+//===-- Shared exp function -------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SHARED_MATH_EXP_H
+#define LLVM_LIBC_SHARED_MATH_EXP_H
+
+#include "shared/libc_common.h"
+#include "src/__support/math/exp.h"
+
+namespace LIBC_NAMESPACE_DECL {
+namespace shared {
+
+using math::exp;
+
+} // namespace shared
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LLVM_LIBC_SHARED_MATH_EXP_H
diff --git a/libc/src/__support/math/CMakeLists.txt b/libc/src/__support/math/CMakeLists.txt
index 66c1d19a1cab0..92af75b4d946d 100644
--- a/libc/src/__support/math/CMakeLists.txt
+++ b/libc/src/__support/math/CMakeLists.txt
@@ -22,3 +22,42 @@ add_header_library(
libc.src.__support.macros.config
libc.src.__support.macros.optimization
)
+
+add_header_library(
+ exp_constants
+ HDRS
+ exp_constants.h
+ DEPENDS
+ libc.src.__support.FPUtil.triple_double
+)
+
+add_header_library(
+ exp_utils
+ HDRS
+ exp_utils.h
+ DEPENDS
+ libc.src.__support.CPP.optional
+ libc.src.__support.CPP.bit
+ libc.src.__support.FPUtil.fp_bits
+)
+
+add_header_library(
+ exp
+ HDRS
+ exp.h
+ DEPENDS
+ .exp_constants
+ .exp_utils
+ libc.src.__support.CPP.bit
+ libc.src.__support.CPP.optional
+ libc.src.__support.FPUtil.dyadic_float
+ libc.src.__support.FPUtil.fenv_impl
+ libc.src.__support.FPUtil.fp_bits
+ libc.src.__support.FPUtil.multiply_add
+ libc.src.__support.FPUtil.nearest_integer
+ libc.src.__support.FPUtil.polyeval
+ libc.src.__support.FPUtil.rounding_mode
+ libc.src.__support.FPUtil.triple_double
+ libc.src.__support.integer_literals
+ libc.src.__support.macros.optimization
+)
diff --git a/libc/src/__support/math/exp.h b/libc/src/__support/math/exp.h
new file mode 100644
index 0000000000000..6d9ac8d401e06
--- /dev/null
+++ b/libc/src/__support/math/exp.h
@@ -0,0 +1,449 @@
+//===-- Implementation header for exp ---------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_EXP_H
+#define LLVM_LIBC_SRC___SUPPORT_MATH_EXP_H
+
+#include "exp_constants.h"
+#include "exp_utils.h"
+#include "src/__support/CPP/bit.h"
+#include "src/__support/CPP/optional.h"
+#include "src/__support/FPUtil/FEnvImpl.h"
+#include "src/__support/FPUtil/FPBits.h"
+#include "src/__support/FPUtil/PolyEval.h"
+#include "src/__support/FPUtil/double_double.h"
+#include "src/__support/FPUtil/dyadic_float.h"
+#include "src/__support/FPUtil/multiply_add.h"
+#include "src/__support/FPUtil/nearest_integer.h"
+#include "src/__support/FPUtil/rounding_mode.h"
+#include "src/__support/FPUtil/triple_double.h"
+#include "src/__support/common.h"
+#include "src/__support/integer_literals.h"
+#include "src/__support/macros/config.h"
+#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
+
+
+namespace LIBC_NAMESPACE_DECL {
+
+using fputil::DoubleDouble;
+using fputil::TripleDouble;
+using Float128 = typename fputil::DyadicFloat<128>;
+
+using LIBC_NAMESPACE::operator""_u128;
+
+// log2(e)
+static constexpr double LOG2_E = 0x1.71547652b82fep+0;
+
+// Error bounds:
+// Errors when using double precision.
+static constexpr double ERR_D = 0x1.8p-63;
+
+#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+// Errors when using double-double precision.
+static constexpr double ERR_DD = 0x1.0p-99;
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+
+// -2^-12 * log(2)
+// > a = -2^-12 * log(2);
+// > b = round(a, 30, RN);
+// > c = round(a - b, 30, RN);
+// > d = round(a - b - c, D, RN);
+// Errors < 1.5 * 2^-133
+static constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13;
+static constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47;
+
+#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+static constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47;
+static constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79;
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+
+namespace {
+
+// Polynomial approximations with double precision:
+// Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
+// For |dx| < 2^-13 + 2^-30:
+// | output - expm1(dx) / dx | < 2^-51.
+static constexpr double poly_approx_d(double dx) {
+ // dx^2
+ double dx2 = dx * dx;
+ // c0 = 1 + dx / 2
+ double c0 = fputil::multiply_add(dx, 0.5, 1.0);
+ // c1 = 1/6 + dx / 24
+ double c1 =
+ fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3);
+ // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24
+ double p = fputil::multiply_add(dx2, c1, c0);
+ return p;
+}
+
+#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+// Polynomial approximation with double-double precision:
+// Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^6 / 720
+// For |dx| < 2^-13 + 2^-30:
+// | output - exp(dx) | < 2^-101
+static constexpr DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
+ // Taylor polynomial.
+ constexpr DoubleDouble COEFFS[] = {
+ {0, 0x1p0}, // 1
+ {0, 0x1p0}, // 1
+ {0, 0x1p-1}, // 1/2
+ {0x1.5555555555555p-57, 0x1.5555555555555p-3}, // 1/6
+ {0x1.5555555555555p-59, 0x1.5555555555555p-5}, // 1/24
+ {0x1.1111111111111p-63, 0x1.1111111111111p-7}, // 1/120
+ {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720
+ };
+
+ DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
+ COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
+ return p;
+}
+
+// Polynomial approximation with 128-bit precision:
+// Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^7 / 5040
+// For |dx| < 2^-13 + 2^-30:
+// | output - exp(dx) | < 2^-126.
+static constexpr Float128 poly_approx_f128(const Float128 &dx) {
+ constexpr Float128 COEFFS_128[]{
+ {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
+ {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
+ {Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5
+ {Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6
+ {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24
+ {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120
+ {Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720
+ {Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040
+ };
+
+ Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
+ COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
+ COEFFS_128[6], COEFFS_128[7]);
+ return p;
+}
+
+// Compute exp(x) using 128-bit precision.
+// TODO(lntue): investigate triple-double precision implementation for this
+// step.
+static constexpr Float128 exp_f128(double x, double kd, int idx1, int idx2) {
+ // Recalculate dx:
+
+ double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
+ double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact
+ double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-133
+
+ Float128 dx = fputil::quick_add(
+ Float128(t1), fputil::quick_add(Float128(t2), Float128(t3)));
+
+ // TODO: Skip recalculating exp_mid1 and exp_mid2.
+ Float128 exp_mid1 =
+ fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
+ fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
+ Float128(EXP2_MID1[idx1].lo)));
+
+ Float128 exp_mid2 =
+ fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
+ fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
+ Float128(EXP2_MID2[idx2].lo)));
+
+ Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
+
+ Float128 p = poly_approx_f128(dx);
+
+ Float128 r = fputil::quick_mul(exp_mid, p);
+
+ r.exponent += static_cast<int>(kd) >> 12;
+
+ return r;
+}
+
+// Compute exp(x) with double-double precision.
+static constexpr DoubleDouble exp_double_double(double x, double kd,
+ const DoubleDouble &exp_mid) {
+ // Recalculate dx:
+ // dx = x - k * 2^-12 * log(2)
+ double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
+ double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact
+ double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-130
+
+ DoubleDouble dx = fputil::exact_add(t1, t2);
+ dx.lo += t3;
+
+ // Degree-6 Taylor polynomial approximation in double-double precision.
+ // | p - exp(x) | < 2^-100.
+ DoubleDouble p = poly_approx_dd(dx);
+
+ // Error bounds: 2^-99.
+ DoubleDouble r = fputil::quick_mult(exp_mid, p);
+
+ return r;
+}
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+
+// Check for exceptional cases when
+// |x| <= 2^-53 or x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9
+static constexpr double set_exceptional(double x) {
+ using FPBits = typename fputil::FPBits<double>;
+ FPBits xbits(x);
+
+ uint64_t x_u = xbits.uintval();
+ uint64_t x_abs = xbits.abs().uintval();
+
+ // |x| <= 2^-53
+ if (x_abs <= 0x3ca0'0000'0000'0000ULL) {
+ // exp(x) ~ 1 + x
+ return 1 + x;
+ }
+
+ // x <= log(2^-1075) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan.
+
+ // x <= log(2^-1075) or -inf/nan
+ if (x_u >= 0xc087'4910'd52d'3052ULL) {
+ // exp(-Inf) = 0
+ if (xbits.is_inf())
+ return 0.0;
+
+ // exp(nan) = nan
+ if (xbits.is_nan())
+ return x;
+
+ if (fputil::quick_get_round() == FE_UPWARD)
+ return FPBits::min_subnormal().get_val();
+ fputil::set_errno_if_required(ERANGE);
+ fputil::raise_except_if_required(FE_UNDERFLOW);
+ return 0.0;
+ }
+
+ // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan
+ // x is finite
+ if (x_u < 0x7ff0'0000'0000'0000ULL) {
+ int rounding = fputil::quick_get_round();
+ if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
+ return FPBits::max_normal().get_val();
+
+ fputil::set_errno_if_required(ERANGE);
+ fputil::raise_except_if_required(FE_OVERFLOW);
+ }
+ // x is +inf or nan
+ return x + FPBits::inf().get_val();
+}
+
+} // namespace
+
+namespace math {
+
+static constexpr double exp(double x) {
+ using FPBits = typename fputil::FPBits<double>;
+ FPBits xbits(x);
+
+ uint64_t x_u = xbits.uintval();
+
+ // Upper bound: max normal number = 2^1023 * (2 - 2^-52)
+ // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9
+ // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9
+ // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9
+ // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty
+
+ // Lower bound: min denormal number / 2 = 2^-1075
+ // > round(log(2^-1075), D, RN) = -0x1.74910d52d3052p9
+
+ // Another lower bound: min normal number = 2^-1022
+ // > round(log(2^-1022), D, RN) = -0x1.6232bdd7abcd2p9
+
+ // x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9 or |x| < 2^-53.
+ if (LIBC_UNLIKELY(x_u >= 0xc0874910d52d3052 ||
+ (x_u < 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) ||
+ x_u < 0x3ca0000000000000)) {
+ return set_exceptional(x);
+ }
+
+ // Now log(2^-1075) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52))
+
+ // Range reduction:
+ // Let x = log(2) * (hi + mid1 + mid2) + lo
+ // in which:
+ // hi is an integer
+ // mid1 * 2^6 is an integer
+ // mid2 * 2^12 is an integer
+ // then:
+ // exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo).
+ // With this formula:
+ // - multiplying by 2^hi is exact and cheap, simply by adding the exponent
+ // field.
+ // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
+ // - exp(lo) ~ 1 + lo + a0 * lo^2 + ...
+ //
+ // They can be defined by:
+ // hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x)
+ // If we store L2E = round(log2(e), D, RN), then:
+ // log2(e) - L2E ~ 1.5 * 2^(-56)
+ // So the errors when computing in double precision is:
+ // | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <=
+ // <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | +
+ // + | x * 2^12 * L2E - D(x * 2^12 * L2E) |
+ // <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x)) for RN
+ // 2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes.
+ // So if:
+ // hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely
+ // in double precision, the reduced argument:
+ // lo = x - log(2) * (hi + mid1 + mid2) is bounded by:
+ // |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x))
+ // < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52))
+ // < 2^-13 + 2^-41
+ //
+
+ // The following trick computes the round(x * L2E) more efficiently
+ // than using the rounding instructions, with the tradeoff for less accuracy,
+ // and hence a slightly larger range for the reduced argument `lo`.
+ //
+ // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9,
+ // |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23,
+ // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t.
+ // Thus, the goal is to be able to use an additional addition and fixed width
+ // shift to get an int32_t representing round(x * 2^12 * L2E).
+ //
+ // Assuming int32_t using 2-complement representation, since the mantissa part
+ // of a double precision is unsigned with the leading bit hidden, if we add an
+ // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
+ // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
+ // considered as a proper 2-complement representations of x*2^12*L2E.
+ //
+ // One small problem with this approach is that the sum (x*2^12*L2E + C) in
+ // double precision is rounded to the least significant bit of the dorminant
+ // factor C. In order to minimize the rounding errors from this addition, we
+ // want to minimize e1. Another constraint that we want is that after
+ // shifting the mantissa so that the least significant bit of int32_t
+ // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
+ // any adjustment. So combining these 2 requirements, we can choose
+ // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
+ // after right shifting the mantissa, the resulting int32_t has correct sign.
+ // With this choice of C, the number of mantissa bits we need to shift to the
+ // right is: 52 - 33 = 19.
+ //
+ // Moreover, since the integer right shifts are equivalent to rounding down,
+ // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
+ // +infinity. So in particular, we can compute:
+ // hmm = x * 2^12 * L2E + C,
+ // where C = 2^33 + 2^32 + 2^-1, then if
+ // k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19),
+ // the reduced argument:
+ // lo = x - log(2) * 2^-12 * k is bounded by:
+ // |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19
+ // = 2^-13 + 2^-31 + 2^-41.
+ //
+ // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the
+ // exponent 2^12 is not needed. So we can simply define
+ // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
+ // k = int32_t(lower 51 bits of double(x * L2E + C) >> 19).
+
+ // Rounding errors <= 2^-31 + 2^-41.
+ double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21);
+ int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
+ double kd = static_cast<double>(k);
+
+ uint32_t idx1 = (k >> 6) & 0x3f;
+ uint32_t idx2 = k & 0x3f;
+ int hi = k >> 12;
+
+ bool denorm = (hi <= -1022);
+
+ DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
+ DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
+
+ DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
+
+ // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo)
+ // = 2^11 * 2^-13 * 2^-52
+ // = 2^-54.
+ // |dx| < 2^-13 + 2^-30.
+ double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
+ double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h);
+
+ // We use the degree-4 Taylor polynomial to approximate exp(lo):
+ // exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo)
+ // So that the errors are bounded by:
+ // |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
+ // Let P_ be an evaluation of P where all intermediate computations are in
+ // double precision. Using either Horner's or Estrin's schemes, the evaluated
+ // errors can be bounded by:
+ // |P_(dx) - P(dx)| < 2^-51
+ // => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64
+ // => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63.
+ // Since we approximate
+ // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
+ // We use the expression:
+ // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
+ // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
+ // with errors bounded by 1.5 * 2^-63.
+
+ double mid_lo = dx * exp_mid.hi;
+
+ // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
+ double p = poly_approx_d(dx);
+
+ double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
+
+#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+ if (LIBC_UNLIKELY(denorm)) {
+ return ziv_test_denorm</*SKIP_ZIV_TEST=*/true>(hi, exp_mid.hi, lo, ERR_D)
+ .value();
+ } else {
+ // to multiply by 2^hi, a fast way is to simply add hi to the exponent
+ // field.
+ int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
+ double r =
+ cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(exp_mid.hi + lo));
+ return r;
+ }
+#else
+ if (LIBC_UNLIKELY(denorm)) {
+ if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D);
+ LIBC_LIKELY(r.has_value()))
+ return r.value();
+ } else {
+ double upper = exp_mid.hi + (lo + ERR_D);
+ double lower = exp_mid.hi + (lo - ERR_D);
+
+ if (LIBC_LIKELY(upper == lower)) {
+ // to multiply by 2^hi, a fast way is to simply add hi to the exponent
+ // field.
+ int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
+ double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
+ return r;
+ }
+ }
+
+ // Use double-double
+ DoubleDouble r_dd = exp_double_double(x, kd, exp_mid);
+
+ if (LIBC_UNLIKELY(denorm)) {
+ if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD);
+ LIBC_LIKELY(r.has_value()))
+ return r.value();
+ } else {
+ double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD);
+ double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD);
+
+ if (LIBC_LIKELY(upper_dd == lower_dd)) {
+ int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
+ double r =
+ cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
+ return r;
+ }
+ }
+
+ // Use 128-bit precision
+ Float128 r_f128 = exp_f128(x, kd, idx1, idx2);
+
+ return static_cast<double>(r_f128);
+#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
+}
+
+} // namespace math
+
+} // namespace LIBC_NAMESPACE_DECL
+
+#endif // LLVM_LIBC_SRC___SUPPORT_MATH_EXP_H
diff --git a/libc/src/__support/math/exp_constants.h b/libc/src/__support/math/exp_constants.h
new file mode 100644
index 0000000000000..32976a86a01ad
--- /dev/null
+++ b/libc/src/__support/math/exp_constants.h
@@ -0,0 +1,174 @@
+//===-- Constants for exp function ------------------------------*- C++ -*-===//
+//
+// Part o...
[truncated]
|
✅ With the latest revision this PR passed the C/C++ code formatter. |
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/215/builds/1048 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/104/builds/26773 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/71/builds/26777 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/131/builds/26098 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/11/builds/19485 Here is the relevant piece of the build log for the reference
|
…-only in src/__support/math folder." (#148668) Reverts llvm/llvm-project#148091 Full build bots are failing.
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/153/builds/38005 Here is the relevant piece of the build log for the reference
|
Part of #147386
in preparation for: https://discourse.llvm.org/t/rfc-make-clang-builtin-math-functions-constexpr-with-llvm-libc-to-support-c-23-constexpr-math-functions/86450
Please merge #147906 first