Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions tests/integ/test_byo_estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ def test_byo_estimator(sagemaker_session, region):

endpoint_name = name_from_base('byo')

with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
model = estimator.create_model()
predictor = model.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
predictor.serializer = fm_serializer
Expand Down Expand Up @@ -145,7 +145,7 @@ def test_async_byo_estimator(sagemaker_session, region):
estimator.fit({'train': s3_train_data}, wait=False)
training_job_name = estimator.latest_training_job.name

with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=30):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
estimator = Estimator.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
model = estimator.create_model()
predictor = model.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
Expand Down
4 changes: 2 additions & 2 deletions tests/integ/test_factorization_machines.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def test_factorization_machines(sagemaker_session):
fm.fit(fm.record_set(train_set[0][:200], train_set[1][:200].astype('float32')))

endpoint_name = name_from_base('fm')
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
model = FactorizationMachinesModel(fm.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session)
predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)
result = predictor.predict(train_set[0][:10])
Expand Down Expand Up @@ -77,7 +77,7 @@ def test_async_factorization_machines(sagemaker_session):
time.sleep(20)
print("attaching now...")

with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=35):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
estimator = FactorizationMachines.attach(training_job_name=training_job_name,
sagemaker_session=sagemaker_session)
model = FactorizationMachinesModel(estimator.model_data, role='SageMakerRole',
Expand Down
4 changes: 2 additions & 2 deletions tests/integ/test_kmeans.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def test_kmeans(sagemaker_session):
kmeans.fit(kmeans.record_set(train_set[0][:100]))

endpoint_name = name_from_base('kmeans')
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
model = KMeansModel(kmeans.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session)
predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)
result = predictor.predict(train_set[0][:10])
Expand Down Expand Up @@ -90,7 +90,7 @@ def test_async_kmeans(sagemaker_session):
time.sleep(20)
print("attaching now...")

with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=35):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
estimator = KMeans.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
model = KMeansModel(estimator.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session)
predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)
Expand Down
2 changes: 1 addition & 1 deletion tests/integ/test_lda.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def test_lda(sagemaker_session):
lda.fit(record_set, 100)

endpoint_name = name_from_base('lda')
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
model = LDAModel(lda.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session)
predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)

Expand Down
4 changes: 2 additions & 2 deletions tests/integ/test_linear_learner.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ def test_linear_learner(sagemaker_session):
ll.fit(ll.record_set(train_set[0][:200], train_set[1][:200]))

endpoint_name = name_from_base('linear-learner')
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):

predictor = ll.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)

Expand Down Expand Up @@ -147,7 +147,7 @@ def test_async_linear_learner(sagemaker_session):
print("Waiting to re-attach to the training job: %s" % training_job_name)
time.sleep(20)

with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=35):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
estimator = LinearLearner.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
model = LinearLearnerModel(estimator.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session)
predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)
Expand Down
6 changes: 3 additions & 3 deletions tests/integ/test_mxnet_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ def mxnet_training_job(sagemaker_session, mxnet_full_version):
def test_attach_deploy(mxnet_training_job, sagemaker_session):
endpoint_name = 'test-mxnet-attach-deploy-{}'.format(sagemaker_timestamp())

with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
estimator = MXNet.attach(mxnet_training_job, sagemaker_session=sagemaker_session)
predictor = estimator.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
data = numpy.zeros(shape=(1, 1, 28, 28))
Expand All @@ -55,7 +55,7 @@ def test_attach_deploy(mxnet_training_job, sagemaker_session):
def test_deploy_model(mxnet_training_job, sagemaker_session):
endpoint_name = 'test-mxnet-deploy-model-{}'.format(sagemaker_timestamp())

with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
desc = sagemaker_session.sagemaker_client.describe_training_job(TrainingJobName=mxnet_training_job)
model_data = desc['ModelArtifacts']['S3ModelArtifacts']
script_path = os.path.join(DATA_DIR, 'mxnet_mnist', 'mnist.py')
Expand Down Expand Up @@ -88,7 +88,7 @@ def test_async_fit(sagemaker_session):
print("Waiting to re-attach to the training job: %s" % training_job_name)
time.sleep(20)

with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=35):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
print("Re-attaching now to: %s" % training_job_name)
estimator = MXNet.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
predictor = estimator.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
Expand Down
2 changes: 1 addition & 1 deletion tests/integ/test_ntm.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def test_ntm(sagemaker_session):
ntm.fit(record_set, None)

endpoint_name = name_from_base('ntm')
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
model = NTMModel(ntm.model_data, role='SageMakerRole', sagemaker_session=sagemaker_session)
predictor = model.deploy(1, 'ml.c4.xlarge', endpoint_name=endpoint_name)

Expand Down
4 changes: 2 additions & 2 deletions tests/integ/test_pca.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def test_pca(sagemaker_session):
pca.fit(pca.record_set(train_set[0][:100]))

endpoint_name = name_from_base('pca')
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
pca_model = sagemaker.amazon.pca.PCAModel(model_data=pca.model_data, role='SageMakerRole',
sagemaker_session=sagemaker_session)
predictor = pca_model.deploy(initial_instance_count=1, instance_type="ml.c4.xlarge",
Expand Down Expand Up @@ -79,7 +79,7 @@ def test_async_pca(sagemaker_session):
print("Detached from training job. Will re-attach in 20 seconds")
time.sleep(20)

with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=35):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
estimator = sagemaker.amazon.pca.PCA.attach(training_job_name=training_job_name,
sagemaker_session=sagemaker_session)

Expand Down
4 changes: 2 additions & 2 deletions tests/integ/test_tf.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def test_tf(sagemaker_session, tf_full_version):
print('job succeeded: {}'.format(estimator.latest_training_job.name))

endpoint_name = estimator.latest_training_job.name
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
json_predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge',
endpoint_name=endpoint_name)

Expand Down Expand Up @@ -75,7 +75,7 @@ def test_tf_async(sagemaker_session):
time.sleep(20)

endpoint_name = training_job_name
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=35):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
estimator = TensorFlow.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
json_predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.c4.xlarge',
endpoint_name=endpoint_name)
Expand Down
2 changes: 1 addition & 1 deletion tests/integ/test_tf_cifar.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def test_cifar(sagemaker_session, tf_full_version):
print('job succeeded: {}'.format(estimator.latest_training_job.name))

endpoint_name = estimator.latest_training_job.name
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, minutes=20):
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
predictor = estimator.deploy(initial_instance_count=1, instance_type='ml.p2.xlarge')
predictor.serializer = PickleSerializer()
predictor.content_type = PICKLE_CONTENT_TYPE
Expand Down
2 changes: 1 addition & 1 deletion tests/integ/timeout.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ def handler(signum, frame):


@contextmanager
def timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, seconds=0, minutes=0, hours=0):
def timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session, seconds=0, minutes=35, hours=0):
with timeout(seconds=seconds, minutes=minutes, hours=hours) as t:
try:
yield [t]
Expand Down