Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 26 additions & 12 deletions python/pyspark/sql/pandas/map_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ class PandasMapOpsMixin:
"""

def mapInPandas(
self, func: "PandasMapIterFunction", schema: Union[StructType, str], isBarrier: bool = False
self, func: "PandasMapIterFunction", schema: Union[StructType, str], barrier: bool = False
) -> "DataFrame":
"""
Maps an iterator of batches in the current :class:`DataFrame` using a Python native
Expand Down Expand Up @@ -60,7 +60,11 @@ def mapInPandas(
schema : :class:`pyspark.sql.types.DataType` or str
the return type of the `func` in PySpark. The value can be either a
:class:`pyspark.sql.types.DataType` object or a DDL-formatted type string.
isBarrier : Use barrier mode execution if True.
barrier : bool, optional, default True
Use barrier mode execution.

.. versionchanged: 3.5.0
Added ``barrier`` argument.

Examples
--------
Expand All @@ -75,9 +79,12 @@ def mapInPandas(
+---+---+
| 1| 21|
+---+---+
>>> # Set isBarrier=True to force the "mapInPandas" stage running in barrier mode,
>>> # it ensures all python UDF workers in the stage will be launched concurrently.
>>> df.mapInPandas(filter_func, df.schema, isBarrier=True).show() # doctest: +SKIP

Set ``barrier`` to ``True`` to force the ``mapInPandas`` stage running in the
barrier mode, it ensures all Python workers in the stage will be
launched concurrently.

>>> df.mapInPandas(filter_func, df.schema, barrier=True).show() # doctest: +SKIP
+---+---+
| id|age|
+---+---+
Expand All @@ -102,11 +109,11 @@ def mapInPandas(
func, returnType=schema, functionType=PythonEvalType.SQL_MAP_PANDAS_ITER_UDF
) # type: ignore[call-overload]
udf_column = udf(*[self[col] for col in self.columns])
jdf = self._jdf.mapInPandas(udf_column._jc.expr(), isBarrier)
jdf = self._jdf.mapInPandas(udf_column._jc.expr(), barrier)
return DataFrame(jdf, self.sparkSession)

def mapInArrow(
self, func: "ArrowMapIterFunction", schema: Union[StructType, str], isBarrier: bool = False
self, func: "ArrowMapIterFunction", schema: Union[StructType, str], barrier: bool = False
) -> "DataFrame":
"""
Maps an iterator of batches in the current :class:`DataFrame` using a Python native
Expand All @@ -131,7 +138,11 @@ def mapInArrow(
schema : :class:`pyspark.sql.types.DataType` or str
the return type of the `func` in PySpark. The value can be either a
:class:`pyspark.sql.types.DataType` object or a DDL-formatted type string.
isBarrier : Use barrier mode execution if True.
barrier : bool, optional, default True
Use barrier mode execution.

.. versionchanged: 3.5.0
Added ``barrier`` argument.

Examples
--------
Expand All @@ -147,9 +158,12 @@ def mapInArrow(
+---+---+
| 1| 21|
+---+---+
>>> # Set isBarrier=True to force the "mapInArrow" stage running in barrier mode,
>>> # it ensures all python UDF workers in the stage will be launched concurrently.
>>> df.mapInArrow(filter_func, df.schema, isBarrier=True).show() # doctest: +SKIP

Set ``barrier`` to ``True`` to force the ``mapInArrow`` stage running in the
barrier mode, it ensures all Python workers in the stage will be
launched concurrently.

>>> df.mapInArrow(filter_func, df.schema, barrier=True).show() # doctest: +SKIP
+---+---+
| id|age|
+---+---+
Expand All @@ -175,7 +189,7 @@ def mapInArrow(
func, returnType=schema, functionType=PythonEvalType.SQL_MAP_ARROW_ITER_UDF
) # type: ignore[call-overload]
udf_column = udf(*[self[col] for col in self.columns])
jdf = self._jdf.pythonMapInArrow(udf_column._jc.expr(), isBarrier)
jdf = self._jdf.pythonMapInArrow(udf_column._jc.expr(), barrier)
return DataFrame(jdf, self.sparkSession)


Expand Down