Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 16 additions & 16 deletions docs/source/advanced/advanced_gpu.rst
Original file line number Diff line number Diff line change
Expand Up @@ -291,7 +291,7 @@ Below we show an example of running `ZeRO-Offload <https://www.deepspeed.ai/tuto
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy

model = MyModel()
trainer = Trainer(gpus=4, strategy="deepspeed_stage_2_offload", precision=16)
Expand All @@ -310,7 +310,7 @@ You can also modify the ZeRO-Offload parameters via the plugin as below.
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy

model = MyModel()
trainer = Trainer(
Expand All @@ -335,7 +335,7 @@ For even more speed benefit, DeepSpeed offers an optimized CPU version of ADAM c

import pytorch_lightning
from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy
from deepspeed.ops.adam import DeepSpeedCPUAdam


Expand Down Expand Up @@ -379,7 +379,7 @@ Also please have a look at our :ref:`deepspeed-zero-stage-3-tips` which contains
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy
from deepspeed.ops.adam import FusedAdam


Expand All @@ -403,7 +403,7 @@ You can also use the Lightning Trainer to run predict or evaluate with DeepSpeed
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy


class MyModel(pl.LightningModule):
Expand All @@ -429,7 +429,7 @@ This reduces the time taken to initialize very large models, as well as ensure w

import torch.nn as nn
from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy
from deepspeed.ops.adam import FusedAdam


Expand Down Expand Up @@ -467,7 +467,7 @@ DeepSpeed ZeRO Stage 3 Offloads optimizer state, gradients to the host CPU to re
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy

# Enable CPU Offloading
model = MyModel()
Expand Down Expand Up @@ -496,7 +496,7 @@ Additionally, DeepSpeed supports offloading to NVMe drives for even larger model
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy

# Enable CPU Offloading
model = MyModel()
Expand Down Expand Up @@ -541,7 +541,7 @@ This saves memory when training larger models, however requires using a checkpoi
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy
import deepspeed


Expand All @@ -564,7 +564,7 @@ This saves memory when training larger models, however requires using a checkpoi
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy
import deepspeed


Expand Down Expand Up @@ -644,7 +644,7 @@ In some cases you may want to define your own DeepSpeed Config, to access all pa
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy

deepspeed_config = {
"zero_allow_untested_optimizer": True,
Expand Down Expand Up @@ -687,7 +687,7 @@ We support taking the config as a json formatted file:
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy

model = MyModel()
trainer = Trainer(gpus=4, strategy=DeepSpeedStrategy("/path/to/deepspeed_config.json"), precision=16)
Expand Down Expand Up @@ -722,7 +722,7 @@ This can reduce peak memory usage and throughput as saved memory will be equal t
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DDPStrategy
from pytorch_lightning.strategies import DDPStrategy

model = MyModel()
trainer = Trainer(gpus=4, strategy=DDPStrategy(gradient_as_bucket_view=True))
Expand All @@ -741,7 +741,7 @@ Enable `FP16 Compress Hook for multi-node throughput improvement <https://pytorc
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DDPStrategy
from pytorch_lightning.strategies import DDPStrategy
from torch.distributed.algorithms.ddp_comm_hooks import (
default_hooks as default,
powerSGD_hook as powerSGD,
Expand All @@ -760,7 +760,7 @@ Enable `PowerSGD for multi-node throughput improvement <https://pytorch.org/docs
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DDPStrategy
from pytorch_lightning.strategies import DDPStrategy
from torch.distributed.algorithms.ddp_comm_hooks import powerSGD_hook as powerSGD

model = MyModel()
Expand All @@ -786,7 +786,7 @@ Combine hooks for accumulated benefit:
.. code-block:: python

from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DDPStrategy
from pytorch_lightning.strategies import DDPStrategy
from torch.distributed.algorithms.ddp_comm_hooks import (
default_hooks as default,
powerSGD_hook as powerSGD,
Expand Down
8 changes: 4 additions & 4 deletions docs/source/advanced/ipu.rst
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ You can also use pure 16-bit training, where the weights are also in 16-bit prec
.. code-block:: python

import pytorch_lightning as pl
from pytorch_lightning.plugins import IPUStrategy
from pytorch_lightning.strategies import IPUStrategy

model = MyLightningModule()
model = model.half()
Expand All @@ -80,7 +80,7 @@ IPUs provide further optimizations to speed up training. By using the ``IPUStrat
.. code-block:: python

import pytorch_lightning as pl
from pytorch_lightning.plugins import IPUStrategy
from pytorch_lightning.strategies import IPUStrategy

model = MyLightningModule()
trainer = pl.Trainer(ipus=8, strategy=IPUStrategy(device_iterations=32))
Expand All @@ -92,7 +92,7 @@ Note that by default we return the last device iteration loss. You can override

import poptorch
import pytorch_lightning as pl
from pytorch_lightning.plugins import IPUStrategy
from pytorch_lightning.strategies import IPUStrategy

model = MyLightningModule()
inference_opts = poptorch.Options()
Expand Down Expand Up @@ -121,7 +121,7 @@ Lightning supports dumping all reports to a directory to open using the tool.
.. code-block:: python

import pytorch_lightning as pl
from pytorch_lightning.plugins import IPUStrategy
from pytorch_lightning.strategies import IPUStrategy

model = MyLightningModule()
trainer = pl.Trainer(ipus=8, strategy=IPUStrategy(autoreport_dir="report_dir/"))
Expand Down
2 changes: 1 addition & 1 deletion docs/source/advanced/plugins_registry.rst
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ Additionally, you can pass your custom registered training type plugins to the `

.. code-block:: python

from pytorch_lightning.plugins import DDPStrategy, TrainingTypePluginsRegistry, CheckpointIO
from pytorch_lightning.strategies import DDPStrategy, TrainingTypePluginsRegistry, CheckpointIO


class CustomCheckpointIO(CheckpointIO):
Expand Down
2 changes: 1 addition & 1 deletion docs/source/advanced/training_tricks.rst
Original file line number Diff line number Diff line change
Expand Up @@ -178,7 +178,7 @@ For example, when training Graph Neural Networks, a common strategy is to load t

A simple way to prevent redundant dataset replicas is to rely on :obj:`torch.multiprocessing` to share the `data automatically between spawned processes via shared memory <https://pytorch.org/docs/stable/notes/multiprocessing.html>`_.
For this, all data pre-loading should be done on the main process inside :meth:`DataModule.__init__`.
As a result, all tensor-data will get automatically shared when using the :class:`~pytorch_lightning.plugins.DDPSpawnStrategy` training type strategy:
As a result, all tensor-data will get automatically shared when using the :class:`~pytorch_lightning.strategies.DDPSpawnStrategy` training type strategy:

.. warning::

Expand Down
2 changes: 1 addition & 1 deletion docs/source/common/trainer.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1416,7 +1416,7 @@ Supports passing different training strategies with aliases (ddp, ddp_spawn, etc

.. code-block:: python

from pytorch_lightning.plugins import DDPStrategy
from pytorch_lightning.strategies import DDPStrategy


class CustomDDPStrategy(DDPStrategy):
Expand Down
3 changes: 2 additions & 1 deletion docs/source/extensions/accelerators.rst
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,8 @@ One to handle differences from the training routine and one to handle different

from pytorch_lightning import Trainer
from pytorch_lightning.accelerators import GPUAccelerator
from pytorch_lightning.plugins import NativeMixedPrecisionPlugin, DDPStrategy
from pytorch_lightning.plugins import NativeMixedPrecisionPlugin
from pytorch_lightning.strategies import DDPStrategy

accelerator = GPUAccelerator()
precision_plugin = NativeMixedPrecisionPlugin(precision=16, device="cuda")
Expand Down
2 changes: 1 addition & 1 deletion docs/source/extensions/plugins.rst
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ Expert users may choose to extend an existing plugin by overriding its methods .

.. code-block:: python

from pytorch_lightning.plugins import DDPStrategy
from pytorch_lightning.strategies import DDPStrategy


class CustomDDPStrategy(DDPStrategy):
Expand Down
4 changes: 2 additions & 2 deletions docs/source/guides/speed.rst
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ This by default comes with a performance hit, and can be disabled in most cases.

.. code-block:: python

from pytorch_lightning.plugins import DDPStrategy
from pytorch_lightning.strategies import DDPStrategy

trainer = pl.Trainer(
gpus=2,
Expand All @@ -95,7 +95,7 @@ This by default comes with a performance hit, and can be disabled in most cases.

.. code-block:: python

from pytorch_lightning.plugins import DDPSpawnStrategy
from pytorch_lightning.strategies import DDPSpawnStrategy

trainer = pl.Trainer(
gpus=2,
Expand Down
2 changes: 1 addition & 1 deletion docs/source/starter/lightning_lite.rst
Original file line number Diff line number Diff line change
Expand Up @@ -389,7 +389,7 @@ Additionally, you can pass in your custom training type strategy by configuring

.. code-block:: python

from pytorch_lightning.plugins import DeepSpeedStrategy
from pytorch_lightning.strategies import DeepSpeedStrategy

lite = Lite(strategy=DeepSpeedStrategy(stage=2), accelerator="gpu", devices=2)

Expand Down
3 changes: 2 additions & 1 deletion pytorch_lightning/lite/lite.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,8 @@

from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.lite.wrappers import _LiteDataLoader, _LiteModule, _LiteOptimizer
from pytorch_lightning.plugins import DDPSpawnStrategy, DeepSpeedStrategy, PLUGIN_INPUT, Strategy, TPUSpawnStrategy
from pytorch_lightning.plugins import PLUGIN_INPUT
from pytorch_lightning.strategies import DDPSpawnStrategy, DeepSpeedStrategy, Strategy, TPUSpawnStrategy
from pytorch_lightning.strategies.training_type_plugin import TBroadcast
from pytorch_lightning.trainer.connectors.accelerator_connector import AcceleratorConnector
from pytorch_lightning.utilities import _AcceleratorType, _StrategyType, move_data_to_device
Expand Down
3 changes: 2 additions & 1 deletion pytorch_lightning/lite/wrappers.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,8 @@
from torch.utils.data import DataLoader

from pytorch_lightning.core.mixins import DeviceDtypeModuleMixin
from pytorch_lightning.plugins import PrecisionPlugin, Strategy
from pytorch_lightning.plugins import PrecisionPlugin
from pytorch_lightning.strategies import Strategy
from pytorch_lightning.utilities.apply_func import apply_to_collection, move_data_to_device


Expand Down
2 changes: 1 addition & 1 deletion pytorch_lightning/loops/dataloader/prediction_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

from pytorch_lightning.loops.dataloader.dataloader_loop import DataLoaderLoop
from pytorch_lightning.loops.epoch.prediction_epoch_loop import PredictionEpochLoop
from pytorch_lightning.plugins import DDPSpawnStrategy
from pytorch_lightning.strategies import DDPSpawnStrategy
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.types import _PREDICT_OUTPUT

Expand Down
2 changes: 1 addition & 1 deletion pytorch_lightning/loops/utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
from torch.optim import Optimizer

import pytorch_lightning as pl
from pytorch_lightning.plugins import ParallelStrategy
from pytorch_lightning.strategies import ParallelStrategy
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.fetching import AbstractDataFetcher, DataLoaderIterDataFetcher
Expand Down
Loading