-
Notifications
You must be signed in to change notification settings - Fork 104
Added complete elliptic functions for 1st and 2nd kind #135
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
1e96e2d
Added Complete Elliptic Functions of 1st and 2nd kind
Sumeghtech 3d1af22
Updated docs with elliptic1 and elliptic2
Sumegh-git c770b93
Added elliptic1 and elliptic2.
Sumegh-git 0a26c34
Updated ellip.jl
Sumegh-git 053da6b
Added wiki and dlmf link for ellip.jl
Sumegh-git 9cefeb4
Updated src/SpecialFunctions.jl
Sumegh-git d8659f9
Renamed , Added tests from Wolframalpha
Sumeghtech 88e0e77
Updated runtests.jl
Sumegh-git 930a084
Updated runtests.jl (1)
Sumegh-git a642382
Final tests.
Sumegh-git File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
using Base.Math: @horner | ||
|
||
#Using piecewise approximation polynomial as given in | ||
#'Fast Computation of Complete Elliptic Integrals and Jacobian Elliptic Functions' | ||
# Fukushima, Toshio. (2014). F09-FastEI. Celest Mech Dyn Astr | ||
# DOI 10.1007/s10569-009-9228-z | ||
#Link : https://pdfs.semanticscholar.org/8112/c1f56e833476b61fc54d41e194c962fbe647.pdf | ||
# | ||
#For m<0 , followed Fukushima, Toshio. (2014). Precise, compact, and fast computation of complete elliptic integrals by piecewise minimax rational function approximation. Journal of Computational and Applied Mathematics. 282. 10.13140/2.1.1946.6245. | ||
# Link: https://www.researchgate.net/profile/Toshio_Fukushima/publication/267330394_Precise_compact_and_fast_computation_of_complete_elliptic_integrals_by_piecewise_minimax_rational_function_approximation/links/544b81a40cf2d6347f43074f/Precise-compact-and-fast-computation-of-complete-elliptic-integrals-by-piecewise-minimax-rational-function-approximation.pdf?origin=publication_detail | ||
#Also suggested in this paper that we should consider domain only from (-inf,1]. | ||
|
||
|
||
|
||
""" | ||
ellipk(x) | ||
|
||
DLMF : https://dlmf.nist.gov/19.2#E4 , https://dlmf.nist.gov/19.2#E8 | ||
Wiki : https://en.wikipedia.org/wiki/Elliptic_integral | ||
Computes Complete Elliptic Integral of 1st kind at `x`-> K(x)--- given by: ``\\int_{0}^{\\pi/2} \\frac{1}{\\sqrt{1 - x(\\sin \\theta )^{2}}} d\\theta`` | ||
""" | ||
function ellipk(a::Float64) | ||
flag = false | ||
if a<0.0 | ||
x=a/(a-1) #dealing with negative args | ||
flag=true | ||
elseif a>=0.0 | ||
x=a | ||
flag=false | ||
end | ||
|
||
if x==0.0 | ||
return pi/2 | ||
|
||
elseif x==1.0 | ||
return Inf | ||
|
||
elseif x>1.0 | ||
throw(DomainError(x,"`x` must lie between -Inf and 1 ---- Domain: (-Inf,1.0]")) | ||
|
||
elseif 0.0 <= x < 0.1 #Table 2 from paper | ||
t= x-0.05 | ||
t= @horner(t, 1.591003453790792180 , 0.416000743991786912 , 0.245791514264103415 , 0.179481482914906162 , 0.144556057087555150 , 0.123200993312427711 , 0.108938811574293531 , 0.098853409871592910 , 0.091439629201749751 , 0.085842591595413900 , 0.081541118718303215) | ||
|
||
elseif 0.1 <= x <0.2 #Table 3 | ||
t=x-0.15 | ||
t= @horner(t , 1.635256732264579992 , 0.471190626148732291 , 0.309728410831499587 , 0.252208311773135699 , 0.226725623219684650 , 0.215774446729585976 , 0.213108771877348910 , 0.216029124605188282 , 0.223255831633057896 , 0.234180501294209925 , 0.248557682972264071 , 0.266363809892617521) | ||
|
||
elseif 0.2 <= x < 0.3 #Table 4 | ||
t=x-0.25 | ||
t= @horner(t , 1.685750354812596043 , 0.541731848613280329 , 0.401524438390690257 , 0.369642473420889090 , 0.376060715354583645 , 0.405235887085125919 , 0.453294381753999079 , 0.520518947651184205 , 0.609426039204995055 , 0.724263522282908870 , 0.871013847709812357 , 1.057652872753547036) | ||
|
||
elseif 0.3 <= x < 0.4 #Table 5 | ||
t= x-0.35 | ||
t= @horner(t , 1.744350597225613243 , 0.634864275371935304 , 0.539842564164445538 , 0.571892705193787391 , 0.670295136265406100 , 0.832586590010977199 , 1.073857448247933265 , 1.422091460675497751 , 1.920387183402304829 , 2.632552548331654201 , 3.652109747319039160 , 5.115867135558865806 , 7.224080007363877411) | ||
|
||
elseif 0.4 <= x < 0.5 #Table 6 | ||
t=x-0.45 | ||
t= @horner(t, 1.813883936816982644 , 0.763163245700557246 , 0.761928605321595831 , 0.951074653668427927 , 1.315180671703161215 , 1.928560693477410941 , 2.937509342531378755 , 4.594894405442878062 , 7.330071221881720772 , 11.87151259742530180 , 19.45851374822937738 , 32.20638657246426863 , 53.73749198700554656 , 90.27388602940998849) | ||
|
||
elseif 0.5 <= x < 0.6 #Table 7 | ||
t= x-0.55 | ||
t= @horner(t , 1.898924910271553526 , 0.950521794618244435 , 1.151077589959015808 , 1.750239106986300540 , 2.952676812636875180 , 5.285800396121450889 , 9.832485716659979747 , 18.78714868327559562 , 36.61468615273698145 , 72.45292395127771801 , 145.1079577347069102 , 293.4786396308497026 , 598.3851815055010179 , 1228.420013075863451 , 2536.529755382764488) | ||
elseif 0.6 <= x < 0.7 #Table 8 | ||
t=x-0.65 | ||
t =@horner(t , 2.007598398424376302 , 1.248457231212347337 , 1.926234657076479729 , 3.751289640087587680 , 8.119944554932045802 , 18.66572130873555361 , 44.60392484291437063 , 109.5092054309498377 , 274.2779548232413480,697.5598008606326163 , 1795.716014500247129 , 4668.381716790389910 , 12235.76246813664335 , 32290.17809718320818 , 85713.07608195964685 , 228672.1890493117096 , 612757.2711915852774) | ||
|
||
elseif 0.7 <= x <0.8 #Table 9 | ||
t=x-0.75 | ||
t= @horner(t, 2.156515647499643235 , 1.791805641849463243 , 3.826751287465713147 , 10.38672468363797208 , 31.40331405468070290 , 100.9237039498695416 , 337.3268282632272897 , 1158.707930567827917 , 4060.990742193632092 , 14454.00184034344795 , 52076.66107599404803 , 189493.6591462156887 , 695184.5762413896145 , 2567994.048255284686 , 9541921.966748386322 , 35634927.44218076174 , 133669298.4612040871 , 503352186.6866284541 , 1901975729.538660119 , 7208915015.330103756) | ||
|
||
elseif 0.8 <= x <0.85 #Table 10 | ||
t = x-0.825 | ||
t =@horner(t , 2.318122621712510589 , 2.616920150291232841 , 7.897935075731355823 , 30.50239715446672327 , 131.4869365523528456 , 602.9847637356491617 , 2877.024617809972641 , 14110.51991915180325 , 70621.44088156540229 , 358977.2665825309926 , 1847238.263723971684 , 9600515.416049214109 , 50307677.08502366879 , 265444188.6527127967 , 1408862325.028702687 , 7515687935.373774627) | ||
|
||
elseif 0.85 <= x <0.9 #Table 11 | ||
t= x-0.875 | ||
t =@horner(t, 2.473596173751343912 , 3.727624244118099310 , 15.60739303554930496 , 84.12850842805887747 , 506.9818197040613935 , 3252.277058145123644 , 21713.24241957434256 , 149037.0451890932766 , 1043999.331089990839 , 7427974.817042038995 , 53503839.67558661151 , 389249886.9948708474 , 2855288351.100810619 , 21090077038.76684053 , 156699833947.7902014 , 1170222242422.439893 , 8777948323668.937971 , 66101242752484.95041 , 499488053713388.7989 , 37859743397240299.20) | ||
|
||
elseif x>=0.9 | ||
td= 1-x | ||
td1=td-0.05 | ||
qd = @horner(td, 0.0, (1.0/16.0), (1.0/32.0), (21.0/1024.0), (31.0/2048.0), (6257.0/524288.0), (10293.0/1048576.0), (279025.0/33554432.0), (483127.0/67108864.0), (435506703.0/68719476736.0), (776957575.0/137438953472.0) , (22417045555.0/4398046511104.0) , (40784671953.0/8796093022208.0) , (9569130097211.0/2251799813685248.0) , (17652604545791.0/4503599627370496.0)) | ||
|
||
kdm = @horner(td1 , 1.591003453790792180 , 0.416000743991786912 , 0.245791514264103415 , 0.179481482914906162 , 0.144556057087555150 , 0.123200993312427711 , 0.108938811574293531 , 0.098853409871592910 , 0.091439629201749751 , 0.085842591595413900 , 0.081541118718303215) | ||
km = -Base.log(qd) * (kdm/pi) | ||
t = km | ||
end | ||
if flag == false | ||
return t | ||
elseif flag == true | ||
ans = t / sqrt(1.0-a) | ||
return ans | ||
end | ||
end | ||
|
||
|
||
|
||
#Using piecewise approximation polynomial as given in | ||
#'Fast Computation of Complete Elliptic Integrals and Jacobian Elliptic Functions' | ||
# Fukushima, Toshio. (2014). F09-FastEI. Celest Mech Dyn Astr | ||
# DOI 10.1007/s10569-009-9228-z | ||
#Link : https://pdfs.semanticscholar.org/8112/c1f56e833476b61fc54d41e194c962fbe647.pdf | ||
# | ||
#For m<0 , followed Fukushima, Toshio. (2014). Precise, compact, and fast computation of complete elliptic integrals by piecewise minimax rational function approximation. Journal of Computational and Applied Mathematics. 282. 10.13140/2.1.1946.6245. | ||
# Link: https://www.researchgate.net/profile/Toshio_Fukushima/publication/267330394_Precise_compact_and_fast_computation_of_complete_elliptic_integrals_by_piecewise_minimax_rational_function_approximation/links/544b81a40cf2d6347f43074f/Precise-compact-and-fast-computation-of-complete-elliptic-integrals-by-piecewise-minimax-rational-function-approximation.pdf?origin=publication_detail | ||
#Also suggested in this paper that we should consider domain only from (-inf,1]. | ||
|
||
|
||
""" | ||
ellipe(x) | ||
|
||
DLMF : https://dlmf.nist.gov/19.2#E5 , https://dlmf.nist.gov/19.2#E8 | ||
Wiki : https://en.wikipedia.org/wiki/Elliptic_integral | ||
Computes the Complete Elliptic Integral of 2nd kind at `x` ->E(x)---gven by: ``\\int_{0}^{\\pi/2} \\sqrt{1 - x(\\sin \\theta )^{2}} d\\theta`` | ||
""" | ||
function ellipe(a::Float64) | ||
flag=false | ||
if a<0.0 | ||
x=a/(a-1) #for dealing with negative args | ||
flag=true | ||
elseif a>=0.0 | ||
x=a | ||
flag=false | ||
|
||
end | ||
|
||
if x==0.0 | ||
return pi/2 | ||
elseif x==1.0 | ||
return 1.0 | ||
|
||
elseif x>1.0 | ||
throw(DomainError(x,"`x` must lie between -Inf and 1 ---- Domain : (-inf,1.0]")) | ||
|
||
elseif 0.0 <= x < 0.1 #Table 2 from paper | ||
t= x-0.05 | ||
t= @horner(t , +1.550973351780472328 ,-0.400301020103198524 ,-0.078498619442941939 ,-0.034318853117591992 ,-0.019718043317365499 ,-0.013059507731993309 ,-0.009442372874146547 ,-0.007246728512402157 ,-0.005807424012956090 ,-0.004809187786009338) | ||
|
||
elseif 0.1 <= x < 0.2 #Table 3 | ||
t=x-0.15 | ||
t= @horner(t , +1.510121832092819728 , -0.417116333905867549 , -0.090123820404774569 , -0.043729944019084312, -0.027965493064761785 , -0.020644781177568105 , -0.016650786739707238 , -0.014261960828842520 , -0.012759847429264803 , -0.011799303775587354 , -0.011197445703074968) | ||
|
||
elseif 0.2 <= x < 0.3 #Table 4 | ||
t=x-0.25 | ||
t= @horner(t , 1.467462209339427155 , -0.436576290946337775 , -0.105155557666942554 , -0.057371843593241730 , -0.041391627727340220 , -0.034527728505280841 , -0.031495443512532783 , -0.030527000890325277 , -0.030916984019238900 , -0.032371395314758122 , -0.034789960386404158) | ||
|
||
elseif 0.3 <= x < 0.4 #Table 5 | ||
t= x-0.35 | ||
t= @horner(t, +1.422691133490879171, -0.459513519621048674, -0.125250539822061878, -0.078138545094409477, -0.064714278472050002, -0.062084339131730311, -0.065197032815572477,-0.072793895362578779, -0.084959075171781003, -0.102539850131045997, -0.127053585157696036, -0.160791120691274606) | ||
|
||
elseif 0.4 <= x < 0.5 #Table 6 | ||
t=x-0.45 | ||
t= @horner(t ,+1.375401971871116291 ,-0.487202183273184837 ,-0.153311701348540228 ,-0.111849444917027833 ,-0.108840952523135768 ,-0.122954223120269076 ,-0.152217163962035047 ,-0.200495323642697339 ,-0.276174333067751758 ,-0.393513114304375851 ,-0.575754406027879147 ,-0.860523235727239756 ,-1.308833205758540162) | ||
|
||
elseif 0.5 <= x < 0.6 #Table 7 | ||
t= x-0.55 | ||
t= @horner(t ,+1.325024497958230082 ,-0.521727647557566767 ,-0.194906430482126213 ,-0.171623726822011264 ,-0.202754652926419141 ,-0.278798953118534762 ,-0.420698457281005762 ,-0.675948400853106021 ,-1.136343121839229244 ,-1.976721143954398261 ,-3.531696773095722506 ,-6.446753640156048150 ,-11.97703130208884026) | ||
elseif 0.6 <= x < 0.7 #Table 8 | ||
t=x-0.65 | ||
t= @horner(t, +1.270707479650149744, -0.566839168287866583, -0.262160793432492598, -0.292244173533077419, -0.440397840850423189, -0.774947641381397458, -1.498870837987561088, -3.089708310445186667, -6.667595903381001064, -14.89436036517319078, -34.18120574251449024, -80.15895841905397306, -191.3489480762984920, -463.5938853480342030, -1137.380822169360061) | ||
|
||
elseif 0.7 <= x < 0.8 #Table 9 | ||
t=x-0.75 | ||
t= @horner(t, +1.211056027568459525, -0.630306413287455807, -0.387166409520669145, -0.592278235311934603, -1.237555584513049844, -3.032056661745247199, -8.181688221573590762, -23.55507217389693250, -71.04099935893064956, -221.8796853192349888, -712.1364793277635425, -2336.125331440396407, -7801.945954775964673, -26448.19586059191933, -90799.48341621365251, -315126.0406449163424, -1104011.344311591159) | ||
|
||
elseif 0.8 <= x < 0.85 #Table 10 | ||
t = x-0.825 | ||
t= @horner(t, +1.161307152196282836, -0.701100284555289548, -0.580551474465437362, -1.243693061077786614, -3.679383613496634879, -12.81590924337895775, -49.25672530759985272, -202.1818735434090269, -869.8602699308701437, -3877.005847313289571, -17761.70710170939814, -83182.69029154232061, -396650.4505013548170, -1920033.413682634405) | ||
|
||
elseif 0.85 <= x < 0.9 #Table 11 | ||
t= x-0.875 | ||
t = @horner(t, +1.124617325119752213, -0.770845056360909542, -0.844794053644911362, -2.490097309450394453, -10.23971741154384360, -49.74900546551479866, -267.0986675195705196, -1532.665883825229947, -9222.313478526091951, -57502.51612140314030, -368596.1167416106063, -2415611.088701091428, -16120097.81581656797, -109209938.5203089915, -749380758.1942496220, -5198725846.725541393, -36409256888.12139973) | ||
|
||
elseif x>=0.9 | ||
td= 1-x | ||
td1=td-0.05 | ||
|
||
kdm = @horner(td1 , 1.591003453790792180 , 0.416000743991786912 , 0.245791514264103415 , 0.179481482914906162 , 0.144556057087555150 , 0.123200993312427711,0.108938811574293531 , 0.098853409871592910 ,0.091439629201749751 ,0.085842591595413900 ,0.081541118718303215) | ||
edm = @horner(td1 ,+1.550973351780472328 ,-0.400301020103198524 ,-0.078498619442941939 ,-0.034318853117591992,-0.019718043317365499 ,-0.013059507731993309 ,-0.009442372874146547 ,-0.007246728512402157 ,-0.005807424012956090 ,-0.004809187786009338) | ||
hdm = kdm -edm | ||
km = ellipk(Float64(x)) | ||
#em = km + (pi/2 - km*edm)/kdm | ||
em = (pi/2 + km*hdm)/kdm #to avoid precision loss near 1 | ||
t= em | ||
end | ||
if flag == false | ||
return t | ||
elseif flag == true | ||
return t * sqrt(1.0-a) | ||
|
||
end | ||
end | ||
|
||
for f in (:ellipk,:ellipe) | ||
@eval begin | ||
($f)(x::Float16) = Float16(($f)(Float64(x))) | ||
($f)(x::Float32) = Float32(($f)(Float64(x))) | ||
($f)(x::Real) = ($f)(float(x)) | ||
($f)(x::AbstractFloat) = throw(MethodError($f,(x,""))) | ||
end | ||
end |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.