Skip to content

Added acyclic coloring #60

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 25 commits into from
Aug 26, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
ArrayInterface = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
BandedMatrices = "aae01518-5342-5314-be14-df237901396f"
BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
DiffEqDiffTools = "01453d9d-ee7c-5054-8395-0335cb756afa"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
LightGraphs = "093fc24a-ae57-5d10-9952-331d41423f4d"
Expand All @@ -19,6 +20,7 @@ VertexSafeGraphs = "19fa3120-7c27-5ec5-8db8-b0b0aa330d6f"
[compat]
ArrayInterface = "1.1"
julia = "1"
DataStructures = "0.17"

[extras]
IterativeSolvers = "42fd0dbc-a981-5370-80f2-aaf504508153"
Expand Down
2 changes: 2 additions & 0 deletions src/SparseDiffTools.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ using SparseArrays, ArrayInterface

using BlockBandedMatrices: blocksize, nblocks
using ForwardDiff: Dual, jacobian, partials, DEFAULT_CHUNK_THRESHOLD
using DataStructures: DisjointSets, find_root, union!

using ArrayInterface: matrix_colors

Expand All @@ -39,6 +40,7 @@ include("coloring/high_level.jl")
include("coloring/backtracking_coloring.jl")
include("coloring/contraction_coloring.jl")
include("coloring/greedy_d1_coloring.jl")
include("coloring/acyclic_coloring.jl")
include("coloring/greedy_star1_coloring.jl")
include("coloring/greedy_star2_coloring.jl")
include("coloring/matrix2graph.jl")
Expand Down
201 changes: 201 additions & 0 deletions src/coloring/acyclic_coloring.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
"""
color_graph(g::LightGraphs.AbstractGraphs, ::AcyclicColoring)

Returns a coloring vector following the acyclic coloring rules (1) the coloring
corresponds to a distance-1 coloring, and (2) vertices in every cycle of the
graph are assigned at least three distinct colors. This variant of coloring is
called acyclic since every subgraph induced by vertices assigned any two colors
is a collection of trees—and hence is acyclic.

Reference: Gebremedhin AH, Manne F, Pothen A. **New Acyclic and Star Coloring Algorithms with Application to Computing Hessians**
"""
function color_graph(g::LightGraphs.AbstractGraph, ::AcyclicColoring)

color = zeros(Int, nv(g))
forbidden_colors = zeros(Int, nv(g))

set = DisjointSets{LightGraphs.Edge}([])

first_visit_to_tree = Array{Tuple{Int, Int}, 1}(undef, ne(g))
first_neighbor = Array{Tuple{Int, Int}, 1}(undef, nv(g))

for v in vertices(g)
#enforces the first condition of acyclic coloring
for w in outneighbors(g, v)
if color[w] != 0
forbidden_colors[color[w]] = v
end
end
#enforces the second condition of acyclic coloring
for w in outneighbors(g, v)
if color[w] != 0 #colored neighbor
for x in outneighbors(g, w)
if color[x] != 0 #colored x
if forbidden_colors[color[x]] != v
prevent_cycle(v, w, x, g, color, forbidden_colors, first_visit_to_tree, set)
end
end
end
end
end

color[v] = min_index(forbidden_colors, v)

#grow star for every edge connecting colored vertices v and w
for w in outneighbors(g, v)
if color[w] != 0
grow_star!(set, v, w, g, first_neighbor, color)
end
end

#merge the newly formed stars into existing trees if possible
for w in outneighbors(g, v)
if color[w] != 0
for x in outneighbors(g, w)
if color[x] != 0 && x != v
if color[x] == color[v]
merge_trees!(set, v, w, x, g)
end
end
end
end
end
end

return color
end

"""
prevent_cycle(v::Integer,
w::Integer,
x::Integer,
g::LightGraphs.AbstractGraph,
color::AbstractVector{<:Integer},
forbidden_colors::AbstractVector{<:Integer},
first_visit_to_tree::Array{Tuple{Integer, Integer}, 1},
set::DisjointSets{LightGraphs.Edge})

Subroutine to avoid generation of 2-colored cycle due to coloring of vertex v,
which is adjacent to vertices w and x in graph g. Disjoint set is used to store
the induced 2-colored subgraphs/trees where the id of set is a key edge of g
"""
function prevent_cycle(v::Integer,
w::Integer,
x::Integer,
g::LightGraphs.AbstractGraph,
color::AbstractVector{<:Integer},
forbidden_colors::AbstractVector{<:Integer},
first_visit_to_tree::AbstractVector{<: Tuple{Integer, Integer}},
set::DisjointSets{LightGraphs.Edge})

edge = find_edge(g, w, x)
e = find_root(set, edge)
p, q = first_visit_to_tree[edge_index(g, e)]
if p != v
first_visit_to_tree[edge_index(g, e)] = (v, w)
elseif q != w
forbidden_colors[color[x]] = v
end
end

"""
min_index(forbidden_colors::AbstractVector{<:Integer}, v::Integer)

Returns min{i > 0 such that forbidden_colors[i] != v}
"""
function min_index(forbidden_colors::AbstractVector{<:Integer}, v::Integer)
return findfirst(!isequal(v), forbidden_colors)
end

"""
grow_star!(set::DisjointSets{LightGraphs.Edge},
v::Integer,
w::Integer,
g::LightGraphs.AbstractGraph
first_neighbor::Array{Tuple{Integer, Integer}, 1})

Subroutine to grow a 2-colored star after assigning a new color to the
previously uncolored vertex v, by comparing it with the adjacent vertex w.
Disjoint set is used to store stars in sets, which are identified through key
edges present in g.
"""
function grow_star!(set::DisjointSets{LightGraphs.Edge},
v::Integer,
w::Integer,
g::LightGraphs.AbstractGraph,
first_neighbor::AbstractArray{<: Tuple{Integer, Integer}, 1},
color::AbstractVector{<: Integer})
edge = find_edge(g, v, w)
push!(set, edge)
p, q = first_neighbor[color[w]]
if p != v
first_neighbor[color[w]] = (v, w)
else
edge1 = find_edge(g, v, w)
edge2 = find_edge(g, p, q)
e1 = find_root(set, edge1)
e2 = find_root(set, edge2)
union!(set, e1, e2)
end
return nothing
end


"""
merge_trees!(v::Integer,
w::Integer,
x::Integer,
g::LightGraphs.AbstractGraph,
set::DisjointSets{LightGraphs.Edge})

Subroutine to merge trees present in the disjoint set which have a
common edge.
"""
function merge_trees!(set::DisjointSets{LightGraphs.Edge},
v::Integer,
w::Integer,
x::Integer,
g::LightGraphs.AbstractGraph)
edge1 = find_edge(g, v, w)
edge2 = find_edge(g, w, x)
e1 = find_root(set, edge1)
e2 = find_root(set, edge2)
if (e1 != e2)
union!(set, e1, e2)
end
end


"""
find_edge(g::LightGraphs.AbstractGraph, v::Integer, w::Integer)

Returns an edge object of the type LightGraphs.Edge which represents the
edge connecting vertices v and w of the undirected graph g
"""
function find_edge(g::LightGraphs.AbstractGraph,
v::Integer,
w::Integer)
for e in edges(g)
if (src(e) == v && dst(e) == w) || (src(e) == w && dst(e) == v)
return e
end
end
throw(ArgumentError("$v and $w are not connected in graph g"))
end

"""
edge_index(g::LightGraphs.AbstractGraph, e::LightGraphs.Edge)

Returns an Integer value which uniquely identifies the edge e in graph
g. Used as an index in main function to avoid custom arrays with non-
numerical indices.
"""
function edge_index(g::LightGraphs.AbstractGraph,
e::LightGraphs.Edge)
for (i, edge) in enumerate(edges(g))
if edge == e
return i
end
end
throw(ArgumentError("Edge $e is not present in graph g"))
end
2 changes: 0 additions & 2 deletions src/coloring/backtracking_coloring.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
using LightGraphs

"""
color_graph(g::LightGraphs, ::BacktrackingColor)

Expand Down
41 changes: 21 additions & 20 deletions src/coloring/high_level.jl
Original file line number Diff line number Diff line change
@@ -1,20 +1,21 @@
abstract type SparseDiffToolsColoringAlgorithm <: ArrayInterface.ColoringAlgorithm end
struct GreedyD1Color <: SparseDiffToolsColoringAlgorithm end
struct BacktrackingColor <: SparseDiffToolsColoringAlgorithm end
struct ContractionColor <: SparseDiffToolsColoringAlgorithm end
struct GreedyStar1Color <: SparseDiffToolsColoringAlgorithm end
struct GreedyStar2Color <: SparseDiffToolsColoringAlgorithm end

"""
matrix_colors(A,alg::ColoringAlgorithm = GreedyD1Color())

Returns the colorvec vector for the matrix A using the chosen coloring
algorithm. If a known analytical solution exists, that is used instead.
The coloring defaults to a greedy distance-1 coloring.

"""
function ArrayInterface.matrix_colors(A::AbstractMatrix,alg::SparseDiffToolsColoringAlgorithm = GreedyD1Color(); partition_by_rows::Bool = false)
_A = A isa SparseMatrixCSC ? A : sparse(A) # Avoid the copy
A_graph = matrix2graph(_A, partition_by_rows)
color_graph(A_graph,alg)
end
abstract type SparseDiffToolsColoringAlgorithm <: ArrayInterface.ColoringAlgorithm end
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this abstract type needed? Maybe the supertype from ArrayInterface is enough

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm not sure why we implemented it this way. Maybe @ChrisRackauckas can throw some light over it?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Makes it not type piracy

struct GreedyD1Color <: SparseDiffToolsColoringAlgorithm end
struct BacktrackingColor <: SparseDiffToolsColoringAlgorithm end
struct ContractionColor <: SparseDiffToolsColoringAlgorithm end
struct GreedyStar1Color <: SparseDiffToolsColoringAlgorithm end
struct GreedyStar2Color <: SparseDiffToolsColoringAlgorithm end
struct AcyclicColoring <: SparseDiffToolsColoringAlgorithm end

"""
matrix_colors(A,alg::ColoringAlgorithm = GreedyD1Color())

Returns the colorvec vector for the matrix A using the chosen coloring
algorithm. If a known analytical solution exists, that is used instead.
The coloring defaults to a greedy distance-1 coloring.

"""
function ArrayInterface.matrix_colors(A::AbstractMatrix, alg::SparseDiffToolsColoringAlgorithm = GreedyD1Color(); partition_by_rows::Bool = false)
_A = A isa SparseMatrixCSC ? A : sparse(A) # Avoid the copy
A_graph = matrix2graph(_A, partition_by_rows)
return color_graph(A_graph, alg)
end
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ if GROUP == "All"
@time @safetestset "Exact coloring via contraction" begin include("test_contraction.jl") end
@time @safetestset "Greedy distance-1 coloring" begin include("test_greedy_d1.jl") end
@time @safetestset "Greedy star coloring" begin include("test_greedy_star.jl") end
@time @safetestset "Acyclic coloring" begin include("test_acyclic.jl") end
@time @safetestset "Matrix to graph conversion" begin include("test_matrix2graph.jl") end
@time @safetestset "AD using colorvec vector" begin include("test_ad.jl") end
@time @safetestset "Integration test" begin include("test_integration.jl") end
Expand Down
Loading