Skip to content

yamneg96/fraud-detection-code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fraud Detection Code

  • This repository contains a complete pipeline to detect fraudulent transactions using e-commerce and credit card data.

Structure

  • data/raw/: Original CSV datasets.
  • data/processed/: Cleaned and merged fraud data.
  • notebooks/: EDA, feature engineering, model training, explainability.
  • src/: Python modules for each pipeline step.

How to Run

  1. Install dependencies: pip install -r requirements.txt
  2. Run preprocessing: python src/preprocess.py
  3. Train models: python src/train.py
  4. Evaluate models: python src/evaluate.py
  5. Visualize SHAP explanations: python src/shap_explain.py

Models

  • Logistic Regression
  • XGBoost Classifier

Metrics

  • F1 Score
  • ROC AUC
  • Average Precision
  • Confusion Matrix

Notes

  • Handles imbalanced classes using SMOTE.
  • SHAP is used for model interpretability.

Developed for Week 8 of the Adey Innovations Inc. ❤️ YN

About

A complete pipeline to detect fraudulent transactions using e-commerce and credit card data.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages