- This repository contains a complete pipeline to detect fraudulent transactions using e-commerce and credit card data.
data/raw/
: Original CSV datasets.data/processed/
: Cleaned and merged fraud data.notebooks/
: EDA, feature engineering, model training, explainability.src/
: Python modules for each pipeline step.
- Install dependencies:
pip install -r requirements.txt
- Run preprocessing:
python src/preprocess.py
- Train models:
python src/train.py
- Evaluate models:
python src/evaluate.py
- Visualize SHAP explanations:
python src/shap_explain.py
- Logistic Regression
- XGBoost Classifier
- F1 Score
- ROC AUC
- Average Precision
- Confusion Matrix
- Handles imbalanced classes using SMOTE.
- SHAP is used for model interpretability.
Developed for Week 8 of the Adey Innovations Inc. ❤️ YN