@@ -1860,6 +1860,18 @@ def leading_item(self, *args, **kwds):
18601860                sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]                                    # needs sage.combinat sage.modules 
18611861                sage: f.leading_item()                                                  # needs sage.combinat sage.modules 
18621862                ([3], -5) 
1863+ 
1864+             The term ordering of polynomial rings is taken into account:: 
1865+ 
1866+                 sage: R.<x,y,z> = QQ[] 
1867+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_item() 
1868+                 ((0, 4, 0), 1) 
1869+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='lex') 
1870+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_item() 
1871+                 ((1, 2, 0), 3) 
1872+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='invlex') 
1873+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_item() 
1874+                 ((0, 1, 3), 2) 
18631875            """ 
18641876            k  =  self .leading_support (* args , ** kwds )
18651877            return  k , self [k ]
@@ -1890,6 +1902,18 @@ def leading_monomial(self, *args, **kwds):
18901902                sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]                                    # needs sage.combinat sage.modules 
18911903                sage: f.leading_monomial()                                              # needs sage.combinat sage.modules 
18921904                s[3] 
1905+ 
1906+             The term ordering of polynomial rings is taken into account:: 
1907+ 
1908+                 sage: R.<x,y,z> = QQ[] 
1909+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_monomial() 
1910+                 y^4 
1911+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='lex') 
1912+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_monomial() 
1913+                 x*y^2 
1914+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='invlex') 
1915+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_monomial() 
1916+                 y*z^3 
18931917            """ 
18941918            return  self .parent ().monomial (self .leading_support (* args , ** kwds ))
18951919
@@ -1919,6 +1943,18 @@ def leading_coefficient(self, *args, **kwds):
19191943                sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]                                    # needs sage.combinat sage.modules 
19201944                sage: f.leading_coefficient()                                           # needs sage.combinat sage.modules 
19211945                -5 
1946+ 
1947+             The term ordering of polynomial rings is taken into account:: 
1948+ 
1949+                 sage: R.<x,y,z> = QQ[] 
1950+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_coefficient() 
1951+                 1 
1952+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='lex') 
1953+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_coefficient() 
1954+                 3 
1955+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='invlex') 
1956+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_coefficient() 
1957+                 2 
19221958            """ 
19231959            return  self .leading_item (* args , ** kwds )[1 ]
19241960
@@ -1948,6 +1984,18 @@ def leading_term(self, *args, **kwds):
19481984                sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]                                    # needs sage.combinat sage.modules 
19491985                sage: f.leading_term()                                                  # needs sage.combinat sage.modules 
19501986                -5*s[3] 
1987+ 
1988+             The term ordering of polynomial rings is taken into account:: 
1989+ 
1990+                 sage: R.<x,y,z> = QQ[] 
1991+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_term() 
1992+                 y^4 
1993+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='lex') 
1994+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_term() 
1995+                 3*x*y^2 
1996+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='invlex') 
1997+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).leading_term() 
1998+                 2*y*z^3 
19511999            """ 
19522000            return  self .parent ().term (* self .leading_item (* args , ** kwds ))
19532001
@@ -2005,6 +2053,18 @@ def trailing_item(self, *args, **kwds):
20052053                sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]                                    # needs sage.combinat sage.modules 
20062054                sage: f.trailing_item()                                                 # needs sage.combinat sage.modules 
20072055                ([1], 2) 
2056+ 
2057+             The term ordering of polynomial rings is taken into account:: 
2058+ 
2059+                 sage: R.<x,y,z> = QQ[] 
2060+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_item() 
2061+                 ((1, 1, 1), 4) 
2062+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='lex') 
2063+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_item() 
2064+                 ((0, 1, 3), 2) 
2065+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='invlex') 
2066+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_item() 
2067+                 ((1, 2, 0), 3) 
20082068            """ 
20092069            k  =  self .trailing_support (* args , ** kwds )
20102070            return  k , self [k ]
@@ -2035,6 +2095,18 @@ def trailing_monomial(self, *args, **kwds):
20352095                sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]                                    # needs sage.combinat sage.modules 
20362096                sage: f.trailing_monomial()                                             # needs sage.combinat sage.modules 
20372097                s[1] 
2098+ 
2099+             The term ordering of polynomial rings is taken into account:: 
2100+ 
2101+                 sage: R.<x,y,z> = QQ[] 
2102+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_monomial() 
2103+                 x*y*z 
2104+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='lex') 
2105+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_monomial() 
2106+                 y*z^3 
2107+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='invlex') 
2108+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_monomial() 
2109+                 x*y^2 
20382110            """ 
20392111            return  self .parent ().monomial (self .trailing_support (* args , ** kwds ))
20402112
@@ -2064,6 +2136,18 @@ def trailing_coefficient(self, *args, **kwds):
20642136                sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]                                    # needs sage.combinat sage.modules 
20652137                sage: f.trailing_coefficient()                                          # needs sage.combinat sage.modules 
20662138                2 
2139+ 
2140+             The term ordering of polynomial rings is taken into account:: 
2141+ 
2142+                 sage: R.<x,y,z> = QQ[] 
2143+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_coefficient() 
2144+                 4 
2145+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='lex') 
2146+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_coefficient() 
2147+                 2 
2148+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='invlex') 
2149+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_coefficient() 
2150+                 3 
20672151            """ 
20682152            return  self .trailing_item (* args , ** kwds )[1 ]
20692153
@@ -2093,6 +2177,18 @@ def trailing_term(self, *args, **kwds):
20932177                sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]                                    # needs sage.combinat sage.modules 
20942178                sage: f.trailing_term()                                                 # needs sage.combinat sage.modules 
20952179                2*s[1] 
2180+ 
2181+             The term ordering of polynomial rings is taken into account:: 
2182+ 
2183+                 sage: R.<x,y,z> = QQ[] 
2184+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_term() 
2185+                 4*x*y*z 
2186+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='lex') 
2187+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_term() 
2188+                 2*y*z^3 
2189+                 sage: R.<x,y,z> = PolynomialRing(QQ, order='invlex') 
2190+                 sage: (3*x*y^2 + 2*y*z^3 + y^4 + 4*x*y*z).trailing_term() 
2191+                 3*x*y^2 
20962192            """ 
20972193            return  self .parent ().term (* self .trailing_item (* args , ** kwds ))
20982194
0 commit comments