forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
SHS-NG M4.2: Port executors page to new backend. #8
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
52e2641 to
5505c83
Compare
The executors page is built on top of the REST API, so the page itself was easy to hook up to the new code. Some other pages depend on the `ExecutorListener` class that is being removed, though, so they needed to be modified to use data from the new store. Fortunately, all they seemed to need is the map of executor logs, so that was somewhat easy too. The executor timeline graph required some extra code to save the executor-related events in the UI store. This just implements the existing functionality, without making any changes related to efficiency or scalability of that graph. I had to change some of the test golden files because the old code would return executors in "random" order (since it used a mutable Map instead of something that returns a sorted list), and the new code returns executors in id order.
vanzin
pushed a commit
that referenced
this pull request
Oct 3, 2017
## What changes were proposed in this pull request?
This PR aims to optimize GroupExpressions by removing repeating expressions. `RemoveRepetitionFromGroupExpressions` is added.
**Before**
```scala
scala> sql("select a+1 from values 1,2 T(a) group by a+1, 1+a, A+1, 1+A").explain()
== Physical Plan ==
WholeStageCodegen
: +- TungstenAggregate(key=[(a#0 + 1)#6,(1 + a#0)#7,(A#0 + 1)#8,(1 + A#0)#9], functions=[], output=[(a + 1)#5])
: +- INPUT
+- Exchange hashpartitioning((a#0 + 1)#6, (1 + a#0)#7, (A#0 + 1)#8, (1 + A#0)#9, 200), None
+- WholeStageCodegen
: +- TungstenAggregate(key=[(a#0 + 1) AS (a#0 + 1)#6,(1 + a#0) AS (1 + a#0)#7,(A#0 + 1) AS (A#0 + 1)#8,(1 + A#0) AS (1 + A#0)#9], functions=[], output=[(a#0 + 1)#6,(1 + a#0)#7,(A#0 + 1)#8,(1 + A#0)#9])
: +- INPUT
+- LocalTableScan [a#0], [[1],[2]]
```
**After**
```scala
scala> sql("select a+1 from values 1,2 T(a) group by a+1, 1+a, A+1, 1+A").explain()
== Physical Plan ==
WholeStageCodegen
: +- TungstenAggregate(key=[(a#0 + 1)#6], functions=[], output=[(a + 1)#5])
: +- INPUT
+- Exchange hashpartitioning((a#0 + 1)#6, 200), None
+- WholeStageCodegen
: +- TungstenAggregate(key=[(a#0 + 1) AS (a#0 + 1)#6], functions=[], output=[(a#0 + 1)#6])
: +- INPUT
+- LocalTableScan [a#0], [[1],[2]]
```
## How was this patch tested?
Pass the Jenkins tests (with a new testcase)
Author: Dongjoon Hyun <[email protected]>
Closes apache#12590 from dongjoon-hyun/SPARK-14830.
(cherry picked from commit 6e63201)
Signed-off-by: Michael Armbrust <[email protected]>
vanzin
pushed a commit
that referenced
this pull request
Sep 12, 2019
## What changes were proposed in this pull request? This PR aims at improving the way physical plans are explained in spark. Currently, the explain output for physical plan may look very cluttered and each operator's string representation can be very wide and wraps around in the display making it little hard to follow. This especially happens when explaining a query 1) Operating on wide tables 2) Has complex expressions etc. This PR attempts to split the output into two sections. In the header section, we display the basic operator tree with a number associated with each operator. In this section, we strictly control what we output for each operator. In the footer section, each operator is verbosely displayed. Based on the feedback from Maryann, the uncorrelated subqueries (SubqueryExecs) are not included in the main plan. They are printed separately after the main plan and can be correlated by the originating expression id from its parent plan. To illustrate, here is a simple plan displayed in old vs new way. Example query1 : ``` EXPLAIN SELECT key, Max(val) FROM explain_temp1 WHERE key > 0 GROUP BY key HAVING max(val) > 0 ``` Old : ``` *(2) Project [key#2, max(val)#15] +- *(2) Filter (isnotnull(max(val#3)#18) AND (max(val#3)#18 > 0)) +- *(2) HashAggregate(keys=[key#2], functions=[max(val#3)], output=[key#2, max(val)#15, max(val#3)#18]) +- Exchange hashpartitioning(key#2, 200) +- *(1) HashAggregate(keys=[key#2], functions=[partial_max(val#3)], output=[key#2, max#21]) +- *(1) Project [key#2, val#3] +- *(1) Filter (isnotnull(key#2) AND (key#2 > 0)) +- *(1) FileScan parquet default.explain_temp1[key#2,val#3] Batched: true, DataFilters: [isnotnull(key#2), (key#2 > 0)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp1], PartitionFilters: [], PushedFilters: [IsNotNull(key), GreaterThan(key,0)], ReadSchema: struct<key:int,val:int> ``` New : ``` Project (8) +- Filter (7) +- HashAggregate (6) +- Exchange (5) +- HashAggregate (4) +- Project (3) +- Filter (2) +- Scan parquet default.explain_temp1 (1) (1) Scan parquet default.explain_temp1 [codegen id : 1] Output: [key#2, val#3] (2) Filter [codegen id : 1] Input : [key#2, val#3] Condition : (isnotnull(key#2) AND (key#2 > 0)) (3) Project [codegen id : 1] Output : [key#2, val#3] Input : [key#2, val#3] (4) HashAggregate [codegen id : 1] Input: [key#2, val#3] (5) Exchange Input: [key#2, max#11] (6) HashAggregate [codegen id : 2] Input: [key#2, max#11] (7) Filter [codegen id : 2] Input : [key#2, max(val)#5, max(val#3)#8] Condition : (isnotnull(max(val#3)#8) AND (max(val#3)#8 > 0)) (8) Project [codegen id : 2] Output : [key#2, max(val)#5] Input : [key#2, max(val)#5, max(val#3)#8] ``` Example Query2 (subquery): ``` SELECT * FROM explain_temp1 WHERE KEY = (SELECT Max(KEY) FROM explain_temp2 WHERE KEY = (SELECT Max(KEY) FROM explain_temp3 WHERE val > 0) AND val = 2) AND val > 3 ``` Old: ``` *(1) Project [key#2, val#3] +- *(1) Filter (((isnotnull(KEY#2) AND isnotnull(val#3)) AND (KEY#2 = Subquery scalar-subquery#39)) AND (val#3 > 3)) : +- Subquery scalar-subquery#39 : +- *(2) HashAggregate(keys=[], functions=[max(KEY#26)], output=[max(KEY)#45]) : +- Exchange SinglePartition : +- *(1) HashAggregate(keys=[], functions=[partial_max(KEY#26)], output=[max#47]) : +- *(1) Project [key#26] : +- *(1) Filter (((isnotnull(KEY#26) AND isnotnull(val#27)) AND (KEY#26 = Subquery scalar-subquery#38)) AND (val#27 = 2)) : : +- Subquery scalar-subquery#38 : : +- *(2) HashAggregate(keys=[], functions=[max(KEY#28)], output=[max(KEY)#43]) : : +- Exchange SinglePartition : : +- *(1) HashAggregate(keys=[], functions=[partial_max(KEY#28)], output=[max#49]) : : +- *(1) Project [key#28] : : +- *(1) Filter (isnotnull(val#29) AND (val#29 > 0)) : : +- *(1) FileScan parquet default.explain_temp3[key#28,val#29] Batched: true, DataFilters: [isnotnull(val#29), (val#29 > 0)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp3], PartitionFilters: [], PushedFilters: [IsNotNull(val), GreaterThan(val,0)], ReadSchema: struct<key:int,val:int> : +- *(1) FileScan parquet default.explain_temp2[key#26,val#27] Batched: true, DataFilters: [isnotnull(key#26), isnotnull(val#27), (val#27 = 2)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp2], PartitionFilters: [], PushedFilters: [IsNotNull(key), IsNotNull(val), EqualTo(val,2)], ReadSchema: struct<key:int,val:int> +- *(1) FileScan parquet default.explain_temp1[key#2,val#3] Batched: true, DataFilters: [isnotnull(key#2), isnotnull(val#3), (val#3 > 3)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/explain_temp1], PartitionFilters: [], PushedFilters: [IsNotNull(key), IsNotNull(val), GreaterThan(val,3)], ReadSchema: struct<key:int,val:int> ``` New: ``` Project (3) +- Filter (2) +- Scan parquet default.explain_temp1 (1) (1) Scan parquet default.explain_temp1 [codegen id : 1] Output: [key#2, val#3] (2) Filter [codegen id : 1] Input : [key#2, val#3] Condition : (((isnotnull(KEY#2) AND isnotnull(val#3)) AND (KEY#2 = Subquery scalar-subquery#23)) AND (val#3 > 3)) (3) Project [codegen id : 1] Output : [key#2, val#3] Input : [key#2, val#3] ===== Subqueries ===== Subquery:1 Hosting operator id = 2 Hosting Expression = Subquery scalar-subquery#23 HashAggregate (9) +- Exchange (8) +- HashAggregate (7) +- Project (6) +- Filter (5) +- Scan parquet default.explain_temp2 (4) (4) Scan parquet default.explain_temp2 [codegen id : 1] Output: [key#26, val#27] (5) Filter [codegen id : 1] Input : [key#26, val#27] Condition : (((isnotnull(KEY#26) AND isnotnull(val#27)) AND (KEY#26 = Subquery scalar-subquery#22)) AND (val#27 = 2)) (6) Project [codegen id : 1] Output : [key#26] Input : [key#26, val#27] (7) HashAggregate [codegen id : 1] Input: [key#26] (8) Exchange Input: [max#35] (9) HashAggregate [codegen id : 2] Input: [max#35] Subquery:2 Hosting operator id = 5 Hosting Expression = Subquery scalar-subquery#22 HashAggregate (15) +- Exchange (14) +- HashAggregate (13) +- Project (12) +- Filter (11) +- Scan parquet default.explain_temp3 (10) (10) Scan parquet default.explain_temp3 [codegen id : 1] Output: [key#28, val#29] (11) Filter [codegen id : 1] Input : [key#28, val#29] Condition : (isnotnull(val#29) AND (val#29 > 0)) (12) Project [codegen id : 1] Output : [key#28] Input : [key#28, val#29] (13) HashAggregate [codegen id : 1] Input: [key#28] (14) Exchange Input: [max#37] (15) HashAggregate [codegen id : 2] Input: [max#37] ``` Note: I opened this PR as a WIP to start getting feedback. I will be on vacation starting tomorrow would not be able to immediately incorporate the feedback. I will start to work on them as soon as i can. Also, currently this PR provides a basic infrastructure for explain enhancement. The details about individual operators will be implemented in follow-up prs ## How was this patch tested? Added a new test `explain.sql` that tests basic scenarios. Need to add more tests. Closes apache#24759 from dilipbiswal/explain_feature. Authored-by: Dilip Biswal <[email protected]> Signed-off-by: Wenchen Fan <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
The executors page is built on top of the REST API, so the page itself
was easy to hook up to the new code.
Some other pages depend on the
ExecutorListenerclass that is beingremoved, though, so they needed to be modified to use data from the
new store. Fortunately, all they seemed to need is the map of executor
logs, so that was somewhat easy too.
The executor timeline graph required some extra code to save the
executor-related events in the UI store. This just implements the
existing functionality, without making any changes related to efficiency
or scalability of that graph.
I had to change some of the test golden files because the old code would
return executors in "random" order (since it used a mutable Map instead
of something that returns a sorted list), and the new code returns executors
in id order.
The static files are still kept in the core/ resources directory since
Jetty's default servlet does not handle fetching static files from multiple
jars.
TODO: add unit tests for the new ExecutorSummary fields being populated.