Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 82 additions & 0 deletions python/tflite_micro/signal/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,10 @@ cc_library(
visibility = [":signal_friends"],
deps = [
":delay_op_cc",
":energy_op_cc",
":fft_ops_cc",
":framer_op_cc",
":overlap_add_op_cc",
":window_op_cc",
],
)
Expand All @@ -31,7 +34,10 @@ py_library(
visibility = ["//python/tflite_micro/signal/utils:__subpackages__"],
deps = [
":delay_op",
":energy_op",
":fft_ops",
":framer_op",
":overlap_add_op",
":window_op",
],
)
Expand Down Expand Up @@ -59,6 +65,32 @@ py_test(
],
)

py_tflm_signal_library(
name = "energy_op",
srcs = ["ops/energy_op.py"],
cc_op_defs = ["//signal/tensorflow_core/ops:energy_op"],
cc_op_kernels = [
"//signal/tensorflow_core/kernels:energy_kernel",
],
)

py_test(
name = "energy_op_test",
size = "small",
srcs = ["ops/energy_op_test.py"],
data = [
"//python/tflite_micro/signal/ops/testdata:energy_test1.txt",
],
python_version = "PY3",
srcs_version = "PY3",
deps = [
":energy_op",
"//python/tflite_micro/signal/utils:util",
requirement("numpy"),
requirement("tensorflow-cpu"),
],
)

py_tflm_signal_library(
name = "fft_ops",
srcs = ["ops/fft_ops.py"],
Expand All @@ -85,6 +117,56 @@ py_test(
],
)

py_tflm_signal_library(
name = "framer_op",
srcs = ["ops/framer_op.py"],
cc_op_defs = ["//signal/tensorflow_core/ops:framer_op"],
cc_op_kernels = [
"//signal/tensorflow_core/kernels:framer_kernel",
],
)

py_test(
name = "framer_op_test",
size = "small",
srcs = ["ops/framer_op_test.py"],
data = [
"//python/tflite_micro/signal/ops/testdata:framer_test1.txt",
],
python_version = "PY3",
srcs_version = "PY3",
deps = [
":framer_op",
"//python/tflite_micro/signal/utils:util",
requirement("numpy"),
requirement("tensorflow-cpu"),
],
)

py_tflm_signal_library(
name = "overlap_add_op",
srcs = ["ops/overlap_add_op.py"],
cc_op_defs = ["//signal/tensorflow_core/ops:overlap_add_op"],
cc_op_kernels = [
"//signal/tensorflow_core/kernels:overlap_add_kernel",
],
)

py_test(
name = "overlap_add_op_test",
size = "small",
srcs = ["ops/overlap_add_op_test.py"],
python_version = "PY3",
srcs_version = "PY3",
deps = [
":overlap_add_op",
"//python/tflite_micro/signal/utils:util",
"@absl_py//absl/testing:parameterized",
requirement("numpy"),
requirement("tensorflow-cpu"),
],
)

py_tflm_signal_library(
name = "window_op",
srcs = ["ops/window_op.py"],
Expand Down
45 changes: 45 additions & 0 deletions python/tflite_micro/signal/ops/energy_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Use energy op in python."""

import tensorflow as tf
from tflite_micro.python.tflite_micro.signal.utils import util

gen_energy_op = util.load_custom_op('energy_op.so')


def _energy_wrapper(energy_fn, default_name):
"""Wrapper around gen_energy_op.energy*."""

def _energy(input_tensor, start_index=0, end_index=-1, name=default_name):
with tf.name_scope(name) as name:
input_tensor = tf.convert_to_tensor(input_tensor, dtype=tf.int16)
dim_list = input_tensor.shape.as_list()
if len(dim_list) != 1:
raise ValueError("Input tensor must have a rank of 1")
if end_index == -1:
end_index = dim_list[0] - 1
return energy_fn(input_tensor,
start_index=start_index,
end_index=end_index,
name=name)

return _energy


# TODO(b/286250473): change back name after name clash resolved
energy = _energy_wrapper(gen_energy_op.signal_energy, "signal_energy")

tf.no_gradient("signal_energy")
137 changes: 137 additions & 0 deletions python/tflite_micro/signal/ops/energy_op_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for energy op."""
import os

import numpy as np
import tensorflow as tf

from tensorflow.python.platform import resource_loader
from tflite_micro.python.tflite_micro.signal.ops import energy_op
from tflite_micro.python.tflite_micro.signal.utils import util


class EnergyOpTest(tf.test.TestCase):

_PREFIX_PATH = resource_loader.get_path_to_datafile('')

def GetResource(self, filepath):
full_path = os.path.join(self._PREFIX_PATH, filepath)
with open(full_path, 'rt') as f:
file_text = f.read()
return file_text

def SingleEnergyTest(self, filename):
lines = self.GetResource(filename).splitlines()
args = lines[0].split()
start_index = int(args[0])
end_index = int(args[1])

func = tf.function(energy_op.energy)
input_size = len(lines[1].split())
concrete_function = func.get_concrete_function(tf.TensorSpec(
input_size, dtype=tf.int16),
start_index=start_index,
end_index=end_index)
interpreter = util.get_tflm_interpreter(concrete_function, func)
# Skip line 0, which contains the configuration params.
# Read lines in pairs <input, expected>
i = 1
while i < len(lines):
in_frame = np.array([int(j) for j in lines[i].split()], dtype='int16')
out_frame_exp = [int(j) for j in lines[i + 1].split()]
# TFLM
interpreter.set_input(in_frame, 0)
interpreter.invoke()
out_frame = interpreter.get_output(0)
for j in range(start_index, end_index):
self.assertEqual(out_frame_exp[j], out_frame[j])
# TF
out_frame = self.evaluate(
energy_op.energy(in_frame,
start_index=start_index,
end_index=end_index))
for j in range(start_index, end_index):
self.assertEqual(out_frame_exp[j], out_frame[j])
i += 2

def testSingleFrame(self):
start_index = 5
end_index = 250
energy_in = [
-56, 0, 26, 49, 144, -183, -621, 16, 544, 605, 11, -581, -26, 245,
-210, -273, 200, 541, 268, -319, -43, -544, -747, 356, 415, 356, 174,
-133, 4, -278, -487, 104, 449, 560, 223, -691, -451, 130, 132, 202, 86,
-91, 170, -85, -454, -123, 330, 125, -434, 104, 422, 89, -14, -113,
-123, -63, 125, 142, 40, -218, -183, -10, 3, 154, 95, -64, -108, -55,
55, 216, 47, -358, -297, 391, 437, 5, -59, -252, -102, -25, -60, 76,
-46, 6, 128, 113, -4, -101, 20, -75, -154, 88, 144, -50, -163, 58, 112,
38, 31, 2, -38, -80, 77, 63, -136, -83, 83, 89, 32, 27, 6, -237, -247,
250, 292, -13, -55, 4, 58, -182, -120, 63, -33, -40, -88, 152, 246, 41,
-99, -178, -11, 68, -10, 3, 14, 39, 30, -94, -29, 79, -6, -84, -65, 55,
138, 71, -141, -151, 150, 149, -159, -106, 203, 55, -207, -153, -37,
231, 187, -6, 54, -66, -85, -258, -244, 271, 157, 24, 117, 144, 144,
-202, -66, -320, -478, 340, 510, 46, -152, -185, -199, -19, 139, 282,
-15, -140, 129, 45, -124, -26, 145, -36, -79, -17, -85, -29, 104, 82,
-84, -7, 127, -96, -210, 60, 114, 67, 40, -3, -1, -101, -76, 77, 55,
-5, 19, 13, 13, -36, -40, -34, 20, 63, 7, -66, -44, -6, -22, 66, 40,
-20, 13, 21, -15, -45, 6, 38, 19, -40, -46, -3, 2, 41, 41, -17, -37,
-11, 15, 13, -4, -5, 0, 1, 2, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1,
1, -1, -2, -1, 0, -1, 0, 0, -1, 0, -1, 0, 0, 1, 0, -1, 0, 1, -1, -1, 0,
0, 0, -1, 0, -1, 0, 1, 0, 0, -1, -1, 1, -1, -1, 0, 0, 0, 0, -2, -1, -1,
0, 0, -1, -1, 0, 0, -1, -1, -1, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, -1,
-1, 0, 1, 0, -1, -1, 0, -2, 0, 0, 0, 0, -1, -3, 1, 2, 0, 0, 1, 2, -1,
-1, -1, -1, -1, -1, 0, 0, 1, 0, -1, -1, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0,
-1, 0, -1, 0, 0, -1, -1, 0, 0, 0, 0, -1, -1, 0, 1, -1, -1, 0, -2, 0, 1,
0, 0, 0, 0, 1, -1, -1, 1, 0, -1, 0, 0, -1, 0, 2, 1, -2, -1, 1, 0, 0,
-2, 0, 0, -1, -1, 0, 0, 0, 0, -1, -2, -1, 1, 1, 0, 0, 0, 0, -1, -1, 0,
1, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, -1, 0, -1, -1, 0, 0, 0, 1, -1,
0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, -2, 0, 1, 0, 1, 1, -1, -1, -1,
0, 0, 0, 0, -1, -1, -1, 0, 1, 0, -2, -1, 1, 1, 1, -1, -3, -1, 1, -1,
-2, 0, -1, -2, -1, 0, 0, 0, -3, -1, 0, 0, -1, 0, 0, -2, 0
]
energy_exp = [
0, 0, 0, 0, 0, 337682, 60701, 118629, 332681, 173585, 297785, 684745,
298961, 47965, 77300, 247985, 515201, 527210, 220301, 58228, 15677,
36125, 221245, 124525, 199172, 186005, 12965, 19098, 35789, 49124,
33589, 23725, 13121, 14689, 49681, 130373, 241090, 190994, 66985,
11029, 9376, 2152, 29153, 10217, 6025, 31460, 23236, 29933, 13988, 965,
7844, 9898, 25385, 14810, 1753, 56205, 123509, 85433, 3041, 36488,
18369, 2689, 30848, 62197, 41485, 4745, 109, 1717, 9736, 7082, 7092,
7250, 24085, 42682, 44701, 36517, 44234, 66258, 54730, 35005, 7272,
73789, 132977, 25225, 34425, 61540, 106756, 344084, 262216, 57329,
39962, 98845, 19825, 18666, 16052, 22321, 6530, 8066, 17540, 7105,
25345, 47700, 17485, 1609, 10202, 11705, 3050, 530, 1465, 2756, 4369,
4405, 1972, 4840, 2000, 610, 2250, 1480, 1961, 2125, 1685, 1970, 1490,
394, 41, 1, 4, 0, 0, 1, 0, 0, 1, 2, 5, 1, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1,
1, 0, 2, 2, 1, 0, 4, 2, 0, 2, 0, 2, 2, 1, 0, 1, 0, 1, 2, 1, 1, 1, 4, 0,
1, 10, 4, 1, 5, 2, 2, 1, 1, 1, 2, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 2, 1,
2, 4, 1, 0, 0, 2, 2, 1, 0, 1, 5, 5, 1, 4, 0, 2, 0, 0, 5, 2, 1, 0, 1, 1,
2, 0, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 0, 0, 1, 4, 1, 2, 2, 1, 0, 1,
2, 1, 4, 2, 2, 10, 2, 5, 1, 0, 0, 0, 0, 0, 0, 0
]
energy_out = energy_op.energy(energy_in,
start_index=start_index,
end_index=end_index)

for j in range(start_index, end_index):
self.assertEqual(energy_exp[j], energy_out[j])

def testEnergy(self):
self.SingleEnergyTest('testdata/energy_test1.txt')


if __name__ == '__main__':
tf.test.main()
52 changes: 52 additions & 0 deletions python/tflite_micro/signal/ops/framer_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Use framer op in python."""

import tensorflow as tf
from tflite_micro.python.tflite_micro.signal.utils import util

gen_framer_op = util.load_custom_op('framer_op.so')


def _framer_wrapper(framer_fn, default_name):
"""Wrapper around gen_framer_op.framer*."""

def _framer(input_tensor,
frame_size,
frame_step,
prefill=False,
name=default_name):
if frame_step > frame_size:
raise ValueError("frame_step must not be greater than frame_size.")
with tf.name_scope(name) as name:
input_tensor = tf.convert_to_tensor(input_tensor, dtype=tf.int16)
dim_list = input_tensor.shape.as_list()
if dim_list[-1] % frame_step != 0:
raise ValueError(
"Innermost input dimenion size must be a multiple of %d elements" %
frame_step)
return framer_fn(input_tensor,
frame_size=frame_size,
frame_step=frame_step,
prefill=prefill,
name=name)

return _framer


# TODO(b/286250473): change back name after name clash resolved
framer = _framer_wrapper(gen_framer_op.signal_framer, "signal_framer")

tf.no_gradient("signal_framer")
Loading