Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 0 additions & 6 deletions tensorflow_addons/layers/normalizations.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,9 +155,6 @@ def get_config(self):
base_config = super().get_config()
return {**base_config, **config}

def compute_output_shape(self, input_shape):
return input_shape

def _reshape_into_groups(self, inputs, input_shape, tensor_input_shape):

group_shape = [tensor_input_shape[i] for i in range(len(input_shape))]
Expand Down Expand Up @@ -447,9 +444,6 @@ def call(self, inputs):
normalized_inputs = inputs * tf.math.rsqrt(nu2 + epsilon)
return self.gamma * normalized_inputs + self.beta

def compute_output_shape(self, input_shape):
return input_shape

def get_config(self):
config = {
"axis": self.axis,
Expand Down
66 changes: 66 additions & 0 deletions tensorflow_addons/layers/tests/normalizations_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -346,6 +346,52 @@ def test_groupnorm_convnet_no_center_no_scale():
)


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
@pytest.mark.parametrize("center", [True, False])
@pytest.mark.parametrize("scale", [True, False])
def test_group_norm_compute_output_shape(center, scale):

target_variables_len = [center, scale].count(True)
target_trainable_variables_len = [center, scale].count(True)
layer1 = GroupNormalization(groups=2, center=center, scale=scale)
layer1.build(input_shape=[8, 28, 28, 16]) # build()
assert len(layer1.variables) == target_variables_len
assert len(layer1.trainable_variables) == target_trainable_variables_len

layer2 = GroupNormalization(groups=2, center=center, scale=scale)
layer2.compute_output_shape(input_shape=[8, 28, 28, 16]) # compute_output_shape()
assert len(layer2.variables) == target_variables_len
assert len(layer2.trainable_variables) == target_trainable_variables_len

layer3 = GroupNormalization(groups=2, center=center, scale=scale)
layer3(tf.random.normal(shape=[8, 28, 28, 16])) # call()
assert len(layer3.variables) == target_variables_len
assert len(layer3.trainable_variables) == target_trainable_variables_len


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
@pytest.mark.parametrize("center", [True, False])
@pytest.mark.parametrize("scale", [True, False])
def test_instance_norm_compute_output_shape(center, scale):

target_variables_len = [center, scale].count(True)
target_trainable_variables_len = [center, scale].count(True)
layer1 = InstanceNormalization(groups=2, center=center, scale=scale)
layer1.build(input_shape=[8, 28, 28, 16]) # build()
assert len(layer1.variables) == target_variables_len
assert len(layer1.trainable_variables) == target_trainable_variables_len

layer2 = InstanceNormalization(groups=2, center=center, scale=scale)
layer2.compute_output_shape(input_shape=[8, 28, 28, 16]) # compute_output_shape()
assert len(layer2.variables) == target_variables_len
assert len(layer2.trainable_variables) == target_trainable_variables_len

layer3 = InstanceNormalization(groups=2, center=center, scale=scale)
layer3(tf.random.normal(shape=[8, 28, 28, 16])) # call()
assert len(layer3.variables) == target_variables_len
assert len(layer3.trainable_variables) == target_trainable_variables_len


def calculate_frn(
x, beta=0.2, gamma=1, eps=1e-6, learned_epsilon=False, dtype=np.float32
):
Expand Down Expand Up @@ -471,3 +517,23 @@ def test_filter_response_normalization_save(tmpdir):
model.save(filepath, save_format="h5")
filepath = str(tmpdir / "test")
model.save(filepath, save_format="tf")


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
def test_filter_response_norm_compute_output_shape():
target_variables_len = 2
target_trainable_variables_len = 2
layer1 = FilterResponseNormalization()
layer1.build(input_shape=[8, 28, 28, 16]) # build()
assert len(layer1.variables) == target_variables_len
assert len(layer1.trainable_variables) == target_trainable_variables_len

layer2 = FilterResponseNormalization()
layer2.compute_output_shape(input_shape=[8, 28, 28, 16]) # compute_output_shape()
assert len(layer2.variables) == target_variables_len
assert len(layer2.trainable_variables) == target_trainable_variables_len

layer3 = FilterResponseNormalization()
layer3(tf.random.normal(shape=[8, 28, 28, 16])) # call()
assert len(layer3.variables) == target_variables_len
assert len(layer3.trainable_variables) == target_trainable_variables_len