Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .github/CODEOWNERS
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,8 @@
/tensorflow_addons/layers/tests/noisy_dense_test.py @markub3327
/tensorflow_addons/layers/max_unpooling_2d.py @thaink
/tensorflow_addons/layers/tests/max_unpooling_2d_test.py @thaink
/tensorflow_addons/layers/max_unpooling_2d_v2.py @midsterx
/tensorflow_addons/layers/tests/max_unpooling_2d_v2_test.py @midsterx
/tensorflow_addons/layers/embedding_bag.py @rocketknight1
/tensorflow_addons/layers/tests/embedding_bag_test.py @rocketknight1

Expand Down
1 change: 1 addition & 0 deletions tensorflow_addons/layers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from tensorflow_addons.layers.embedding_bag import EmbeddingBag
from tensorflow_addons.layers.gelu import GELU
from tensorflow_addons.layers.max_unpooling_2d import MaxUnpooling2D
from tensorflow_addons.layers.max_unpooling_2d_v2 import MaxUnpooling2DV2
from tensorflow_addons.layers.maxout import Maxout
from tensorflow_addons.layers.multihead_attention import MultiHeadAttention
from tensorflow_addons.layers.normalizations import FilterResponseNormalization
Expand Down
93 changes: 93 additions & 0 deletions tensorflow_addons/layers/max_unpooling_2d_v2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MaxUnpooling2DV2 operation."""

import tensorflow as tf

from typeguard import typechecked
from typing import Iterable

from tensorflow_addons.utils.keras_utils import normalize_tuple


def _max_unpooling_2d_v2(updates, mask, output_size):
"""Unpool the outputs of a maximum pooling operation."""
mask = tf.cast(mask, "int32")
input_shape = tf.shape(updates, out_type="int32")
input_shape = [updates.shape[i] or input_shape[i] for i in range(4)]
output_shape = output_size

# Calculates indices for batch, height, width and feature maps.
one_like_mask = tf.ones_like(mask, dtype="int32")
batch_shape = tf.concat([[input_shape[0]], [1], [1], [1]], axis=0)
batch_range = tf.reshape(
tf.range(output_shape[0], dtype="int32"), shape=batch_shape
)
b = one_like_mask * batch_range
y = mask // (output_shape[2] * output_shape[3])
x = (mask // output_shape[3]) % output_shape[2]
feature_range = tf.range(output_shape[3], dtype="int32")
f = one_like_mask * feature_range

# Transposes indices & reshape update values to one dimension.
updates_size = tf.size(updates)
indices = tf.transpose(tf.reshape(tf.stack([b, y, x, f]), [4, updates_size]))
values = tf.reshape(updates, [updates_size])
ret = tf.scatter_nd(indices, values, output_shape)
return ret


@tf.keras.utils.register_keras_serializable(package="Addons")
class MaxUnpooling2DV2(tf.keras.layers.Layer):
"""Unpool the outputs of a maximum pooling operation.

This differs from MaxUnpooling2D in that it uses output_size rather than strides and padding
to calculate the unpooled tensor. This is because MaxPoolingWithArgMax can map several input
sizes to the same output size, and specifying the output size avoids ambiguity in the
inversion process.

This function currently does not support outputs of MaxPoolingWithArgMax in following cases:
- include_batch_in_index equals true.
- The max pooling operation results in duplicate values in updates and mask.

Args:
output_size: A tuple/list of 4 integers specifying (batch_size, height, width, channel).
The targeted output size.
Call Args:
updates: A 4D tensor of shape `(batch_size, height, width, channel)`.
The pooling result from max pooling.
mask: A 4D tensor of shape `(batch_size, height, width, channel)`.
The indices of the maximal values.
Output shape:
4D tensor with the same shape as output_size.
"""

@typechecked
def __init__(
self,
output_size: Iterable[int],
**kwargs,
):
super(MaxUnpooling2DV2, self).__init__(**kwargs)

self.output_size = normalize_tuple(output_size, 4, "output_size")

def call(self, updates, mask):
return _max_unpooling_2d_v2(updates, mask, output_size=self.output_size)

def get_config(self):
config = super(MaxUnpooling2DV2, self).get_config()
config["output_size"] = self.output_size
return config
134 changes: 134 additions & 0 deletions tensorflow_addons/layers/tests/max_unpooling_2d_v2_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for MaxUnpooling2DV2 layers."""

import numpy as np
import pytest
import tensorflow as tf
from tensorflow_addons.layers.max_unpooling_2d_v2 import MaxUnpooling2DV2


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add a tflite test case too.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you provide some clarity regarding this?
Did you mean something like @pytest.mark.with_device(["cpu", "gpu", tf.distribute.MirroredStrategy])?

def test_simple():
valid_input = np.array([13, 4]).astype(np.float32)
valid_input = np.reshape(valid_input, (1, 1, 2, 1))
indices = np.array([1, 6]).astype(np.float32)
indices = np.reshape(indices, (1, 1, 2, 1))
output_shape = (1, 2, 4, 1)
expected_output = np.array([0, 13, 0, 0, 0, 0, 4, 0]).astype(np.float32)
expected_output = np.reshape(expected_output, output_shape)

output = MaxUnpooling2DV2(output_shape)(valid_input, indices).numpy()
np.testing.assert_array_equal(expected_output, output)


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
def test_complex():
valid_input = np.array([1, 2, 3, 4, 5, 6, 7, 8]).astype(np.float32)
valid_input = np.reshape(valid_input, (1, 2, 2, 2))
indices = np.array([0, 3, 4, 7, 8, 11, 12, 15]).astype(np.float32)
indices = np.reshape(indices, (1, 2, 2, 2))
output_shape = (1, 4, 2, 2)
expected_output = np.array([1, 0, 0, 2, 3, 0, 0, 4, 5, 0, 0, 6, 7, 0, 0, 8]).astype(
np.float32
)
expected_output = np.reshape(expected_output, output_shape)

output = MaxUnpooling2DV2(output_shape)(valid_input, indices).numpy()
np.testing.assert_array_equal(expected_output, output)


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
def test_batch():
valid_input = np.array(
# fmt: off
[
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
]
# fmt: on
).astype(np.float32)
valid_input = np.reshape(valid_input, (2, 2, 4, 2))
indices = np.array(
# fmt: off
[
2, 23, 8, 9, 12, 15, 40, 43, 44, 47, 72, 75, 80, 79, 62, 65, 0, 1, 30, 7,
14, 35, 42, 21, 68, 69, 50, 51, 56, 5, 86, 63
]
# fmt: on
).astype(np.float32)
indices = np.reshape(indices, (2, 2, 4, 2))
output_shape = (2, 4, 12, 2)
expected_output = np.array(
# fmt: off
[
0, 0, 1, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 8, 9, 0, 0, 10, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 16, 0, 0, 0, 0, 0, 0, 11,
0, 0, 12, 0, 0, 0, 14, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
17, 18, 0, 0, 0, 30, 0, 20, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 24, 0,
0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 0,
0, 0, 0, 27, 28, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 25, 26,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0,
0, 0
]
# fmt: on
).astype(np.float32)
expected_output = np.reshape(expected_output, output_shape)

output = MaxUnpooling2DV2(output_shape)(valid_input, indices)
np.testing.assert_array_equal(expected_output, output)


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
def test_with_pooling_simple():
valid_input = np.array([1, 2, 3, 4, 5, 6, 7, 8]).astype(np.float32)
valid_input = np.reshape(valid_input, (1, 2, 4, 1))
updates, indices = tf.nn.max_pool_with_argmax(
valid_input, ksize=[2, 2], strides=[2, 2], padding="SAME"
)
expected_output = np.array([0, 0, 0, 0, 0, 6, 0, 8]).astype(np.float32)
expected_output = np.reshape(expected_output, valid_input.shape)

output = MaxUnpooling2DV2(valid_input.shape)(updates, indices).numpy()
np.testing.assert_array_equal(expected_output, output)


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
def test_with_pooling():
valid_input = np.array(
[1, 2, 4, 3, 8, 6, 7, 5, 9, 10, 12, 11, 13, 16, 15, 14]
).astype(np.float32)
valid_input = np.reshape(valid_input, (1, 4, 4, 1))
updates, indices = tf.nn.max_pool_with_argmax(
valid_input, ksize=[2, 2], strides=[2, 2], padding="SAME"
)
expected_output = np.array(
[0, 0, 0, 0, 8, 0, 7, 0, 0, 0, 0, 0, 0, 16, 15, 0]
).astype(np.float32)
expected_output = np.reshape(expected_output, valid_input.shape)

output = MaxUnpooling2DV2(valid_input.shape)(updates, indices).numpy()
np.testing.assert_array_equal(expected_output, output)


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
def test_symbolic_tensor_shape():
valid_input = tf.keras.layers.Input((None, None, 1))
updates, indices = tf.nn.max_pool_with_argmax(
valid_input, ksize=[2, 2], strides=[2, 2], padding="SAME"
)
with pytest.raises(ValueError):
MaxUnpooling2DV2(valid_input.shape)(updates, indices)