Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions tensorflow_addons/optimizers/rectified_adam.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ def __init__(
beyond".
sma_threshold. A float value.
The threshold for simple mean average.
total_steps: An integer. Total number of training steps.
total_steps: An integer value. Total number of training steps.
Enable warmup by setting a positive value.
warmup_proportion: A floating point value.
The proportion of increasing steps.
Expand Down Expand Up @@ -131,7 +131,7 @@ def __init__(
self._set_hyper("decay", self._initial_decay)
self._set_hyper("weight_decay", weight_decay)
self._set_hyper("sma_threshold", sma_threshold)
self._set_hyper("total_steps", int(total_steps))
self._set_hyper("total_steps", float(total_steps))
self._set_hyper("warmup_proportion", warmup_proportion)
self._set_hyper("min_lr", min_lr)
self.epsilon = epsilon or tf.keras.backend.epsilon()
Expand Down Expand Up @@ -316,7 +316,7 @@ def get_config(self):
"sma_threshold": self._serialize_hyperparameter("sma_threshold"),
"epsilon": self.epsilon,
"amsgrad": self.amsgrad,
"total_steps": self._serialize_hyperparameter("total_steps"),
"total_steps": int(self._serialize_hyperparameter("total_steps")),
"warmup_proportion": self._serialize_hyperparameter(
"warmup_proportion"
),
Expand Down
23 changes: 23 additions & 0 deletions tensorflow_addons/optimizers/tests/rectified_adam_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,3 +209,26 @@ def test_scheduler_serialization():
"class_name": "InverseTimeDecay",
"config": wd_scheduler.get_config(),
}


def test_checkpoint_serialization(tmpdir):
optimizer = RectifiedAdam()
optimizer2 = RectifiedAdam()

var_0 = tf.Variable([1.0, 2.0], dtype=tf.dtypes.float32)
var_1 = tf.Variable([3.0, 4.0], dtype=tf.dtypes.float32)

grad_0 = tf.constant([0.1, 0.2], dtype=tf.dtypes.float32)
grad_1 = tf.constant([0.03, 0.04], dtype=tf.dtypes.float32)

grads_and_vars = list(zip([grad_0, grad_1], [var_0, var_1]))

optimizer.apply_gradients(grads_and_vars)

checkpoint = tf.train.Checkpoint(optimizer=optimizer)
checkpoint2 = tf.train.Checkpoint(optimizer=optimizer2)
model_path = str(tmpdir / "rectified_adam_chkpt")
checkpoint.write(model_path)
checkpoint2.read(model_path)

optimizer2.apply_gradients(grads_and_vars)