Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 15 additions & 1 deletion tensorflow_addons/layers/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ py_library(
srcs = ([
"__init__.py",
"python/__init__.py",
"python/poincare.py",
"python/wrappers.py",
]),
srcs_version = "PY2AND3",
Expand All @@ -22,4 +23,17 @@ py_test(
":layers_py",
],
srcs_version = "PY2AND3",
)
)

py_test(
name = "poincare_py_test",
size = "small",
srcs = [
"python/poincare_test.py",
],
main = "python/poincare_test.py",
deps = [
":layers_py",
],
srcs_version = "PY2AND3",
)
77 changes: 77 additions & 0 deletions tensorflow_addons/layers/python/poincare.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementing PoincareNormalize layer."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import ops
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.ops import math_ops


class PoincareNormalize(Layer):
"""Project into the Poincare ball with norm <= 1.0 - epsilon.

https://en.wikipedia.org/wiki/Poincare_ball_model

Used in
Poincare Embeddings for Learning Hierarchical Representations
Maximilian Nickel, Douwe Kiela
https://arxiv.org/pdf/1705.08039.pdf

For a 1-D tensor with `axis = 0`, computes

(x * (1 - epsilon)) / ||x|| if ||x|| > 1 - epsilon
output =
x otherwise

For `x` with more dimensions, independently normalizes each 1-D slice along
dimension `axis`.

Arguments:
axis: Axis along which to normalize. A scalar or a vector of
integers.
epsilon: A small deviation from the edge of the unit sphere for numerical
stability.
"""

def __init__(self, axis=1, epsilon=1e-5, **kwargs):
super(PoincareNormalize, self).__init__(**kwargs)
self.axis = axis
self.epsilon = epsilon

def call(self, inputs):
x = ops.convert_to_tensor(inputs)
square_sum = math_ops.reduce_sum(
math_ops.square(x), self.axis, keepdims=True)
x_inv_norm = math_ops.rsqrt(square_sum)
x_inv_norm = math_ops.minimum((1. - self.epsilon) * x_inv_norm, 1.)
outputs = math_ops.multiply(x, x_inv_norm)
return outputs

def compute_output_shape(self, input_shape):
return input_shape

def get_config(self):
config = {'axis': self.axis, 'epsilon': self.epsilon}
base_config = super(PoincareNormalize, self).get_config()
return dict(list(base_config.items()) + list(config.items()))


generic_utils._GLOBAL_CUSTOM_OBJECTS['PoincareNormalize'] = PoincareNormalize

87 changes: 87 additions & 0 deletions tensorflow_addons/layers/python/poincare_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for PoincareNormalize layer."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.keras import testing_utils
from tensorflow.python.platform import test
from tensorflow_addons.layers.python.poincare import PoincareNormalize


class PoincareNormalizeTest(test.TestCase):
def _PoincareNormalize(self, x, dim, epsilon=1e-5):
if isinstance(dim, list):
norm = np.linalg.norm(x, axis=tuple(dim))
for d in dim:
norm = np.expand_dims(norm, d)
norm_x = ((1. - epsilon) * x) / norm
else:
norm = np.expand_dims(
np.apply_along_axis(np.linalg.norm, dim, x), dim)
norm_x = ((1. - epsilon) * x) / norm
return np.where(norm > 1.0 - epsilon, norm_x, x)

def testPoincareNormalize(self):
x_shape = [20, 7, 3]
epsilon = 1e-5
tol = 1e-6
np.random.seed(1)
inputs = np.random.random_sample(x_shape).astype(np.float32)

for dim in range(len(x_shape)):
outputs_expected = self._PoincareNormalize(inputs, dim, epsilon)

outputs = testing_utils.layer_test(
PoincareNormalize,
kwargs={
'axis': dim,
'epsilon': epsilon
},
input_data=inputs,
expected_output=outputs_expected)
for y in outputs_expected, outputs:
norm = np.linalg.norm(y, axis=dim)
self.assertLessEqual(norm.max(), 1. - epsilon + tol)

def testPoincareNormalizeDimArray(self):
x_shape = [20, 7, 3]
epsilon = 1e-5
tol = 1e-6
np.random.seed(1)
inputs = np.random.random_sample(x_shape).astype(np.float32)
dim = [1, 2]

outputs_expected = self._PoincareNormalize(inputs, dim, epsilon)

outputs = testing_utils.layer_test(
PoincareNormalize,
kwargs={
'axis': dim,
'epsilon': epsilon
},
input_data=inputs,
expected_output=outputs_expected)
for y in outputs_expected, outputs:
norm = np.linalg.norm(y, axis=tuple(dim))
self.assertLessEqual(norm.max(), 1. - epsilon + tol)


if __name__ == '__main__':
test.main()