Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 23 additions & 20 deletions tensorflow_addons/layers/normalizations_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,10 +180,6 @@ def _create_and_fit_Sequential_model(self, layer, shape):
model.fit(x=input_batch, y=output_batch, epochs=1, batch_size=1)
return model

def test_axis_error(self):
with self.assertRaises(ValueError):
GroupNormalization(axis=0)

def test_groupnorm_flat(self):
# Check basic usage of groupnorm_flat
# Testing for 1 == LayerNorm, 16 == GroupNorm, -1 == InstanceNorm
Expand Down Expand Up @@ -219,22 +215,29 @@ def test_initializer(self):
negativ = weights[weights < 0.0]
self.assertTrue(len(negativ) == 0)

def test_groupnorm_conv(self):
# Check if Axis is working for CONV nets
# Testing for 1 == LayerNorm, 5 == GroupNorm, -1 == InstanceNorm
np.random.seed(0x2020)
groups = [-1, 5, 1]
for i in groups:
model = tf.keras.models.Sequential()
model.add(GroupNormalization(axis=1, groups=i, input_shape=(20, 20, 3)))
model.add(tf.keras.layers.Conv2D(5, (1, 1), padding="same"))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(1, activation="softmax"))
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.01), loss="mse")
x = np.random.randint(1000, size=(10, 20, 20, 3))
y = np.random.randint(1000, size=(10, 1))
model.fit(x=x, y=y, epochs=1)
self.assertTrue(hasattr(model.layers[0], "gamma"))

def test_axis_error():
with pytest.raises(ValueError):
GroupNormalization(axis=0)


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
def test_groupnorm_conv():
# Check if Axis is working for CONV nets
# Testing for 1 == LayerNorm, 5 == GroupNorm, -1 == InstanceNorm
np.random.seed(0x2020)
groups = [-1, 5, 1]
for i in groups:
model = tf.keras.models.Sequential()
model.add(GroupNormalization(axis=1, groups=i, input_shape=(20, 20, 3)))
model.add(tf.keras.layers.Conv2D(5, (1, 1), padding="same"))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(1, activation="softmax"))
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.01), loss="mse")
x = np.random.randint(1000, size=(10, 20, 20, 3))
y = np.random.randint(1000, size=(10, 1))
model.fit(x=x, y=y, epochs=1)
assert hasattr(model.layers[0], "gamma")


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
Expand Down