Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/CODEOWNERS
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
/tensorflow_addons/callbacks/tqdm_progress_bar*.py @shun-lin

/tensorflow_addons/image/connected_components*.py @sayoojbk
/tensorflow_addons/image/cutout_ops*.py @fsx950223
/tensorflow_addons/image/dense_image_warp*.py @windQAQ
/tensorflow_addons/image/distance_transform*.py @mels630
/tensorflow_addons/image/distort_image_ops*.py @windqaq
Expand Down
13 changes: 13 additions & 0 deletions tensorflow_addons/image/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ py_library(
"connected_components.py",
"resampler_ops.py",
"compose_ops.py",
"cutout_ops.py",
]),
data = [
":sparse_image_warp_test_data",
Expand Down Expand Up @@ -118,6 +119,18 @@ py_test(
],
)

py_test(
name = "cutout_ops_test",
size = "small",
srcs = [
"cutout_ops_test.py",
],
main = "cutout_ops_test.py",
deps = [
":image",
],
)

py_test(
name = "sparse_image_warp_test",
size = "medium",
Expand Down
1 change: 1 addition & 0 deletions tensorflow_addons/image/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,3 +29,4 @@
from tensorflow_addons.image.transform_ops import transform
from tensorflow_addons.image.translate_ops import translate
from tensorflow_addons.image.compose_ops import blend
from tensorflow_addons.image.cutout_ops import random_cutout, cutout
178 changes: 178 additions & 0 deletions tensorflow_addons/image/cutout_ops.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Cutout op"""

import tensorflow as tf
from tensorflow_addons.utils.types import TensorLike, Number
from tensorflow.python.keras.utils import conv_utils


def _get_image_wh(images, data_format):
if data_format == "channels_last":
image_height, image_width = tf.shape(images)[1], tf.shape(images)[2]
else:
image_height, image_width = tf.shape(images)[2], tf.shape(images)[3]

return image_height, image_width


def _norm_params(images, mask_size, data_format):
mask_size = tf.convert_to_tensor(mask_size)
if tf.executing_eagerly():
tf.assert_equal(
tf.reduce_any(mask_size % 2 != 0),
False,
"mask_size should be divisible by 2",
)
if tf.rank(mask_size) == 0:
mask_size = tf.stack([mask_size, mask_size])
data_format = conv_utils.normalize_data_format(data_format)
image_height, image_width = _get_image_wh(images, data_format)
return mask_size, data_format, image_height, image_width


def random_cutout(
images: TensorLike,
mask_size: TensorLike,
constant_values: Number = 0,
seed: Number = None,
data_format: str = "channels_last",
) -> tf.Tensor:
"""Apply cutout (https://arxiv.org/abs/1708.04552) to images.

This operation applies a (mask_height x mask_width) mask of zeros to
a random location within `img`. The pixel values filled in will be of the
value `replace`. The located where the mask will be applied is randomly
chosen uniformly over the whole images.

Args:
images: A tensor of shape
(batch_size, height, width, channels)
(NHWC), (batch_size, channels, height, width)(NCHW).
mask_size: Specifies how big the zero mask that will be generated is that
is applied to the images. The mask will be of size
(mask_height x mask_width). Note: mask_size should be divisible by 2.
constant_values: What pixel value to fill in the images in the area that has
the cutout mask applied to it.
seed: A Python integer. Used in combination with `tf.random.set_seed` to
create a reproducible sequence of tensors across multiple calls.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch_size, ..., channels)` while `channels_first` corresponds to
inputs with shape `(batch_size, channels, ...)`.
Returns:
An image Tensor.
Raises:
InvalidArgumentError: if mask_size can't be divisible by 2.
"""
batch_size = tf.shape(images)[0]
mask_size, data_format, image_height, image_width = _norm_params(
images, mask_size, data_format
)

cutout_center_height = tf.random.uniform(
shape=[batch_size], minval=0, maxval=image_height, dtype=tf.int32, seed=seed
)
cutout_center_width = tf.random.uniform(
shape=[batch_size], minval=0, maxval=image_width, dtype=tf.int32, seed=seed
)

offset = tf.transpose([cutout_center_height, cutout_center_width], [1, 0])
return cutout(images, mask_size, offset, constant_values, data_format,)


def cutout(
images: TensorLike,
mask_size: TensorLike,
offset: TensorLike = (0, 0),
constant_values: Number = 0,
data_format: str = "channels_last",
) -> tf.Tensor:
"""Apply cutout (https://arxiv.org/abs/1708.04552) to images.

This operation applies a (mask_height x mask_width) mask of zeros to
a location within `img` specified by the offset. The pixel values filled in will be of the
value `replace`. The located where the mask will be applied is randomly
chosen uniformly over the whole images.

Args:
images: A tensor of shape (batch_size, height, width, channels)
(NHWC), (batch_size, channels, height, width)(NCHW).
mask_size: Specifies how big the zero mask that will be generated is that
is applied to the images. The mask will be of size
(mask_height x mask_width). Note: mask_size should be divisible by 2.
offset: A tuple of (height, width) or (batch_size, 2)
constant_values: What pixel value to fill in the images in the area that has
the cutout mask applied to it.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch_size, ..., channels)` while `channels_first` corresponds to
inputs with shape `(batch_size, channels, ...)`.
Returns:
An image Tensor.
Raises:
InvalidArgumentError: if mask_size can't be divisible by 2.
"""
with tf.name_scope("cutout"):
offset = tf.convert_to_tensor(offset)
mask_size, data_format, image_height, image_width = _norm_params(
images, mask_size, data_format
)
mask_size = mask_size // 2

if tf.rank(offset) == 1:
offset = tf.expand_dims(offset, 0)
cutout_center_heights = offset[:, 0]
cutout_center_widths = offset[:, 1]

lower_pads = tf.maximum(0, cutout_center_heights - mask_size[0])
upper_pads = tf.maximum(0, image_height - cutout_center_heights - mask_size[0])
left_pads = tf.maximum(0, cutout_center_widths - mask_size[1])
right_pads = tf.maximum(0, image_width - cutout_center_widths - mask_size[1])

cutout_shape = tf.transpose(
[
image_height - (lower_pads + upper_pads),
image_width - (left_pads + right_pads),
],
[1, 0],
)
masks = tf.TensorArray(images.dtype, 0, dynamic_size=True)
for i in tf.range(tf.shape(cutout_shape)[0]):
padding_dims = [
[lower_pads[i], upper_pads[i]],
[left_pads[i], right_pads[i]],
]
mask = tf.pad(
tf.zeros(cutout_shape[i], dtype=images.dtype),
padding_dims,
constant_values=1,
)
masks = masks.write(i, mask)

if data_format == "channels_last":
mask_4d = tf.expand_dims(masks.stack(), -1)
mask = tf.tile(mask_4d, [1, 1, 1, tf.shape(images)[-1]])
else:
mask_4d = tf.expand_dims(masks.stack(), 1)
mask = tf.tile(mask_4d, [1, tf.shape(images)[1], 1, 1])
images = tf.where(
mask == 0,
tf.ones_like(images, dtype=images.dtype) * constant_values,
images,
)
return images
86 changes: 86 additions & 0 deletions tensorflow_addons/image/cutout_ops_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for cutout."""

import sys

import pytest
import tensorflow as tf
import numpy as np
from tensorflow_addons.image.cutout_ops import cutout, random_cutout
from tensorflow_addons.image.utils import to_4D_image


@pytest.mark.parametrize("dtype", [np.float16, np.float32, np.uint8])
def test_different_dtypes(dtype):
test_image = tf.ones([1, 40, 40, 1], dtype=dtype)
result_image = cutout(test_image, 4, [2, 2])
cutout_area = tf.zeros([4, 4], dtype=dtype)
cutout_area = tf.pad(cutout_area, ((0, 36), (0, 36)), constant_values=1)
expect_image = to_4D_image(cutout_area)
np.testing.assert_allclose(result_image, expect_image)
assert result_image.dtype == dtype


def test_different_channels():
for channel in [0, 1, 3, 4]:
test_image = tf.ones([1, 40, 40, channel], dtype=np.uint8)
cutout_area = tf.zeros([4, 4], dtype=np.uint8)
cutout_area = tf.pad(cutout_area, ((0, 36), (0, 36)), constant_values=1)
expect_image = to_4D_image(cutout_area)
expect_image = tf.tile(expect_image, [1, 1, 1, channel])
result_image = random_cutout(test_image, 20, seed=1234)
np.testing.assert_allclose(tf.shape(result_image), tf.shape(expect_image))


def test_batch_size():
test_image = tf.random.uniform([10, 40, 40, 1], dtype=np.float32, seed=1234)
result_image = random_cutout(test_image, 20, seed=1234)
np.testing.assert_allclose(tf.shape(result_image), [10, 40, 40, 1])
means = np.mean(result_image, axis=(1, 2, 3))
np.testing.assert_allclose(len(set(means)), 10)


def test_channel_first():
test_image = tf.ones([10, 1, 40, 40], dtype=np.uint8)
cutout_area = tf.zeros([4, 4], dtype=np.uint8)
cutout_area = tf.pad(cutout_area, ((0, 36), (0, 36)), constant_values=1)
expect_image = tf.expand_dims(cutout_area, 0)
expect_image = tf.expand_dims(expect_image, 0)
expect_image = tf.tile(expect_image, [10, 1, 1, 1])
result_image = random_cutout(
test_image, 20, seed=1234, data_format="channels_first"
)
np.testing.assert_allclose(tf.shape(result_image), tf.shape(expect_image))


@pytest.mark.usefixtures("maybe_run_functions_eagerly")
def test_with_tf_function():
test_image = tf.ones([1, 40, 40, 1], dtype=tf.uint8)
result_image = tf.function(
random_cutout,
input_signature=[
tf.TensorSpec(shape=[None, 40, 40, 1], dtype=tf.uint8),
tf.TensorSpec(shape=[], dtype=tf.int32),
],
)(test_image, 2)
cutout_area = tf.zeros([4, 4], dtype=tf.uint8)
cutout_area = tf.pad(cutout_area, ((0, 36), (0, 36)), constant_values=1)
expect_image = to_4D_image(cutout_area)
np.testing.assert_allclose(tf.shape(result_image), tf.shape(expect_image))


if __name__ == "__main__":
Comment on lines +82 to +85
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you add one more test to ensure that with random cutout, the masks are at different places in the images of the batch? I'll let you decide what's the easier way of doing that.

sys.exit(pytest.main([__file__]))