Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 12 additions & 4 deletions algebra.tex
Original file line number Diff line number Diff line change
Expand Up @@ -7589,20 +7589,28 @@ \section{Finite and integral ring extensions}
Let $R \to S$ be a ring map.
Let $f_1, \ldots, f_n \in R$ generate the unit ideal.
\begin{enumerate}
\item If each $R_{f_i} \to S_{f_i}$ is integral, so is $R \to S$.
\item If each $R_{f_i} \to S_{f_i}$ is finite, so is $R \to S$.
\item $R \to S$ is integral if and only if
$R_{f_i} \to S_{f_i}$ is integral, for all $i=1,\dots,n$.
\item $R \to S$ is finite if and only if
$R_{f_i} \to S_{f_i}$ is finite, for all $i=1,\dots,n$.
\end{enumerate}
\end{lemma}

\begin{proof}
Proof of (1).
Suppose that $R\to S$ is integral (resp., finite).
By Lemma \ref{lemma-base-change-integral},
each $R_{f_i} \to S_{f_i}$ is integral
(resp., finite), using Lemma \ref{lemma-tensor-localization}).
The converse of part (2) is a particular case of Lemma \ref{lemma-cover}.
We prove the converse of part (1).
Suppose then $R_{f_i} \to S_{f_i}$ is integral, for all $i=1,\dots,n$.
Let $s \in S$. Consider the ideal $I \subset R[x]$ of
polynomials $P$ such that $P(s) = 0$. Let $J \subset R$
denote the ideal (!) of leading coefficients of elements of $I$.
By assumption and clearing denominators
we see that $f_i^{n_i} \in J$ for all $i$
and certain $n_i \geq 0$. Hence $J$ contains $1$ and we see
$s$ is integral over $R$. Proof of (2) omitted.
$s$ is integral over $R$.
\end{proof}

\begin{lemma}
Expand Down
124 changes: 124 additions & 0 deletions categories.tex
Original file line number Diff line number Diff line change
Expand Up @@ -755,6 +755,130 @@ \section{Fibre products}
and $g\in \Mor_{\mathcal C}(z, y)$.
\end{definition}

\begin{proof}
\label{definition-diagonal-morphism}
Let $\mathcal{C}$ be a category, let $f:x\to y$ be a
morphism in $\mathcal{C}$, and suppose that $x\times_y x$ exists.
The {\it diagonal morphism}, denoted $\Delta_f$ or $\Delta_{x/y}$,
is the unique morphism $x\to x\times_y x$ coming from the identity $x\to x$.
\end{proof}

\begin{lemma}
\begin{slogan}
The horizontal fibre product of the vertical fibre products
equals the vertical fibre product of the horizontal fibre products.
\end{slogan}
\label{lemma-3x3-pullback}
Let $\mathcal{C}$ be a category that has fibre products and suppose that
$$
\xymatrix{
X_1 \ar[r]\ar[d] & X_0\ar[d] & X_2 \ar[l]\ar[d]\\
S_1 \ar[r] & S_0 & S_2 \ar[l] \\
Y_1 \ar[r]\ar[u] & Y_0\ar[u] & Y_2 \ar[l]\ar[u]
}
$$
is a commutative diagram in $\mathcal{C}$. Then we have
$$
(X_1 \times_{S_1} Y_1) \times_{X_0 \times_{S_0} Y_0} (X_2 \times_{S_2} Y_2)
= (X_1 \times_{X_0} X_2) \times_{S_1 \times_{S_0} S_2} (Y_1 \times_{Y_0} Y_2).
$$
\end{lemma}

\begin{proof}
First proof: Use the fact that the Yoneda embedding
$\mathcal{C}\to\text{Fun}(\mathcal{C}^\text{opp},Sets)$
preserves limits to reduce it to the case of $Sets$,
where it is easier to check the two sets are isomorphic.

\medskip\noindent
Second proof: Define a pair of anti-parallel canonical maps
between the two sides of the equality from the statement.
Do so leveraging the universal properties of all
the involved fibre products.
Verify that these maps are mutually inverse.
\end{proof}

\begin{lemma}
\label{lemma-magic-square}
Let $\mathcal{C}$ be a category that has fibre products.
Let $X\to S$, $Y\to S$, $S\to T$ be morphisms in $\mathcal{C}$.
There is a cartesian diagram
$$
\xymatrix{
X \times_T Y \ar[r] \ar[d] & X \times_S Y \ar[d] \\
T \ar[r]^(.4){\Delta_{T/S}} \ar[r] & T \times_S T
}
$$
\end{lemma}

\begin{proof}
Apply Lemma \ref{lemma-3x3-pullback} to the diagram
$$
\xymatrix{
S \ar[r]\ar[d] & S \ar[d] & X \ar[l]\ar[d]\\
S \ar[r] & T & T \ar[l] \\
S \ar[r]\ar[u] & S \ar[u] & Y \ar[l]\ar[u]
}
$$
\end{proof}

\begin{lemma}
\label{lemma-base-change-diagonal-1-cat}
\begin{slogan}
The base change of the diagonal is the diagonal of the base change.
\end{slogan}
Let $\mathcal{C}$ be a category with fibre products.
Let $X\to S$, $S'\to S$ be morphisms in $\mathcal{C}$,
and let $X'=S'\times_SX$. There is a cartesian square
$$
\xymatrix{
X' \ar[r]^(.37){\Delta_{X'/S'}}\ar[d] & X'\times_{S'}X'\ar[d]\\
X \ar[r]^(.35){\Delta_{X/S}} & X\times_{S}X
}
$$
\end{lemma}

\begin{proof}
Apply Lemma \ref{lemma-3x3-pullback} to the diagram
$$
\xymatrix{
X \ar[r]\ar[d] & X \ar[d] & X' \ar[l]\ar[d]\\
X \ar[r] & S & S' \ar[l] \\
X \ar[r]\ar[u] & X \ar[u] & X' \ar[l]\ar[u]
}
$$
\end{proof}

\begin{lemma}
\label{lemma-pasting-law-pullbacks}
Let
$$
\xymatrix{
X' \ar@{->}[r] \ar@{->}[d] & X \ar@{->}[d] \\
Y' \ar@{->}[r] \ar@{->}[d] & T \ar@{->}[d] \\
Y \ar@{->}[r] & S
}
$$
be a commutative diagram in a category,
and suppose that the lower square is cartesian.
Then the outer rectangle is cartesian
if and only if the upper square is cartesian.
\end{lemma}

\begin{proof}
Suppose each inner square is cartesian. Then the outer rectangle is cartesian by Lemma \ref{lemma-3x3-pullback} applied to the diagram
$$
\xymatrix{
X \ar[r]\ar[d] & T \ar[d] & T \ar[l]\ar[d]\\
S \ar[r] & S & S \ar[l] \\
S \ar[r]\ar[u] & S \ar[u] & Y \ar[l]\ar[u]
}
$$

\medskip\noindent
We omit the proof of the other implication.
\end{proof}

\begin{definition}
\label{definition-representable-morphism}
A morphism $f : x \to y$ of a category $\mathcal{C}$ is said to be
Expand Down
127 changes: 111 additions & 16 deletions morphisms.tex
Original file line number Diff line number Diff line change
Expand Up @@ -216,6 +216,43 @@ \section{Immersions}
\noindent
In this section we collect some facts on immersions.

\begin{lemma}
\label{lemma-immersion}
Let $f:X\to Y$ be a morphism of schemes.
Then $f$ is an immersion if and only if it is a homeomorphism
onto a locally closed subset of $Y$ and $f^\sharp:f^{-1}\mathcal{O}_Y\to\mathcal{O}_X$
is surjective.
\end{lemma}

\begin{proof}
Suppose $f$ is an immersion. There is an open subset $U\subset Y$
such that $f$ equals the composite $X\xrightarrow{i}U\xrightarrow{j}Y$,
where $i$ is a closed immersion. On the level of sheaves, equation $f=j\circ i$
means that the composite
$i^{-1}j^{-1}\mathcal{O}_Y
\xrightarrow{i^{-1}(j^\sharp)}i^{-1}\mathcal{O}_U
\xrightarrow{i^\sharp}\mathcal{O}_X$ equals $f^\sharp$.
Since $j^\sharp$ is an isomorphism, we get that $i^\sharp$ is onto.
Now apply Lemma \ref{lemma-closed-immersion}.

\medskip\noindent
Conversely, suppose that $f$ is a homeomorphism onto a locally closed
subset of $Y$ and that $f^{-1}\mathcal{O}_Y\to\mathcal{O}_X$ is surjective.
There is an open subset $U\subset Y$ such that $f(X)\subset U$ and $f(X)$
is closed in $U$. By Schemes, Lemma \ref{lemma-restrict-map-to-opens},
the commutative diagram of topological spaces
$$
\xymatrix{
X \ar@{->}[r]^{i} \ar@/_/@{->}[rr]_{f} & U \ar@{->}[r]^{j} & Y
}
$$
promotes to a commutative diagram of schemes,
where the morphism $i^\sharp:i^{-1}\mathcal{O}_U\to\mathcal{O}_X$
is given by $f^\sharp:f^{-1}\mathcal{O}_Y\cong i^{-1}j^{-1}\mathcal{O}_Y
\cong i^{-1}\mathcal{O}_U\to\mathcal{O}_X$.
Apply again Lemma \ref{lemma-closed-immersion}.
\end{proof}

\begin{lemma}
\label{lemma-immersion-permanence}
Let $Z \to Y \to X$ be morphisms of schemes.
Expand Down Expand Up @@ -10663,8 +10700,16 @@ \section{Integral and finite morphisms}
\end{lemma}

\begin{proof}
See Algebra, Lemma \ref{algebra-lemma-integral-local}.
Some details omitted.
Implications (1)$\Rightarrow$(3)$\Rightarrow$(2) are clear.
We see (2)$\Rightarrow$(1).
Let $V=\Spec A\subset S$ be open affine,
By Lemma \ref{lemma-characterize-affine}, $f^{-1}(V)=\Spec B$ is affine.
Since any localization of an integral ring morphism is again integral
(Algebra, Lemma \ref{algebra-lemma-integral-local}), we may
(using Schemes, Lemma \ref{lemma-standard-open-two-affines})
cover $\Spec A$ by affine open subschemes of the form $D(f_i)$,
$f_i\in A$, $i=1,\dots,n$, such that $B_{f_i}$ is an integral $A_{f_i}$-algebra.
By Algebra, Lemma \ref{algebra-lemma-integral-local}, $A\to B$ is integral.
\end{proof}

\begin{lemma}
Expand All @@ -10684,8 +10729,8 @@ \section{Integral and finite morphisms}
\end{lemma}

\begin{proof}
See Algebra, Lemma \ref{algebra-lemma-integral-local}.
Some details omitted.
The proof is exactly the same as the proof of Lemma \ref{lemma-integral-local},
but substituting ``integral'' by ``finite.''
\end{proof}

\begin{lemma}
Expand Down Expand Up @@ -10717,7 +10762,30 @@ \section{Integral and finite morphisms}
\end{lemma}

\begin{proof}
See Algebra, Lemma \ref{algebra-lemma-base-change-integral}.
Let
$$
\xymatrix{
X' \ar@{->}[r]^{f'} \ar@{->}[d] & S' \ar@{->}[d] \\
X \ar@{->}[r]^{f} & S
}
$$
be a cartesian diagram of schemes, and suppose that $f$ is finite
(resp., integral). Lemma \ref{lemma-base-change-affine} tells us that
$f'$ is affine. Each point $s'\in S$ has an affine open neighborhood
$V\subset S'$ that maps to an open affine $U\subset S$.
In the proof of the last invoked lemma one sees that the restricted diagram
$$
\xymatrix{
(f')^{-1}(V) \ar@{->}[d] \ar@{->}[r]^{f'} & V \ar@{->}[d] \\
f^{-1}(U) \ar@{->}[r]^{f} & U
}
$$
is a cartesian square of affine schemes.
Hence, using Algebra, Lemma \ref{algebra-lemma-base-change-integral}, one sees that
$f'$ is finite, by Lemma \ref{lemma-finite-local}
(resp., that $f'$ is integral, by Lemma \ref{lemma-integral-local}).
Since these $V$ cover $S'$, we finish by Lemma \ref{lemma-finite-local}
(resp., by Lemma \ref{lemma-integral-local}).
\end{proof}

\begin{lemma}
Expand Down Expand Up @@ -13688,12 +13756,21 @@ \section{Relative normalization}
\end{lemma}

\begin{proof}
By Lemma \ref{lemma-normalization-localization} we may assume $X = \Spec(A)$
For continuous maps of sober spaces, the following property
is local on the target: ``all generic points of the irreducible
components of the target are hit by generic points of irreducible
components of the source'' (use Topology, Lemma
\ref{topology-lemma-correspondence-sober-generic-points-open}).
Hence, by Lemma \ref{lemma-normalization-localization} we may assume $X = \Spec(A)$
is affine. Choose a finite affine open covering $Y = \bigcup \Spec(B_i)$.
Then $X' = \Spec(A')$ and the morphisms $\Spec(B_i) \to Y \to X'$
jointly define an injective $A$-algebra map $A' \to \prod B_i$.
Thus the lemma follows from
Algebra, Lemma \ref{algebra-lemma-injective-minimal-primes-in-image}.
Algebra, Lemma \ref{algebra-lemma-injective-minimal-primes-in-image}
(and also that by Topology, Lemma
\ref{topology-lemma-correspondence-sober-generic-points-open},
every generic point of an irreducible component in $Y$ is a generic
point in $\Spec B_i$ of an irreducible component, for some $i$).
\end{proof}

\begin{lemma}
Expand Down Expand Up @@ -13776,7 +13853,9 @@ \section{Relative normalization}
of schemes. Let $X'$ be the normalization of $X$ in $Y$. Assume
\begin{enumerate}
\item $Y$ is a normal scheme,
\item quasi-compact opens of $Y$ have finitely many irreducible components.
\item $Y$ has locally finitely many irreducible components
(see Properties, Section
\ref{properties-section-locally-finitely-many-irred-comp}).
\end{enumerate}
Then $X'$ is a disjoint union of integral normal schemes. Moreover,
the morphism $Y \to X'$ is dominant and induces a bijection of
Expand Down Expand Up @@ -13811,14 +13890,18 @@ \section{Relative normalization}
Properties, Lemma \ref{properties-lemma-locally-normal} that $X'$ is normal.
On the other hand, each $U'$ is a finite disjoint union of irreducible
schemes, hence every quasi-compact open of $X'$ has finitely many irreducible
components (by a topological argument which we omit). Thus $X'$
components (Properties, Lemma
\ref{properties-lemma-characterize-locally-finitely-many-irred-comp}).
Thus $X'$
is a disjoint union of normal integral schemes by
Properties, Lemma \ref{properties-lemma-normal-locally-finite-nr-irreducibles}.
It is clear from the description of $X'$ above that $Y \to X'$
is dominant and induces a bijection on irreducible components
$V \to U'$ for every affine open $U \subset X$. The bijection of
It is clear that $V \to U'$ induces a bijection on irreducible components
for every affine open $U \subset X$. The bijection of
irreducible components for the morphism $Y \to X'$
follows from this by a topological argument (omitted).
follows from this plus Topology, Lemma
\ref{topology-lemma-bijection-irreducible-components-local-target}.
The morphism $Y\to X'$ is dominant by Lemma
\ref{lemma-characterize-normalization}.
\end{proof}

\begin{lemma}
Expand Down Expand Up @@ -13977,7 +14060,13 @@ \section{Normalization}
canonical maps of Schemes, Section \ref{schemes-section-points}.
Note that this morphism is quasi-compact by assumption and
quasi-separated as $Y$ is separated (see
Schemes, Section \ref{schemes-section-separation-axioms}).
Schemes, Lemmas \ref{lemma-compose-after-separated},
\ref{schemes-lemma-quasi-separated-coproduct}, and
\ref{schemes-lemma-affine-separated}).
This morphism induces a bijection on irreducible components
almost by definition
(Topology, Lemma
\ref{topology-lemma-characterize-bijection-irreducible-components-sober}).

\begin{definition}
\label{definition-normalization}
Expand Down Expand Up @@ -14057,13 +14146,17 @@ \section{Normalization}
This proves (2). Part (3) follows from
Algebra, Lemma \ref{algebra-lemma-characterize-reduced-ring-normal},
or Lemma \ref{lemma-normalization-in-disjoint-union}.
Part (4) holds because it is clear that $f^{-1}(U) \to U$ is the morphism
Finally, we prove part (4).
By Lemma \ref{lemma-normalization-localization} and Topology,
Lemma \ref{topology-lemma-correspondence-sober-generic-points-open},
the morphism $f^{-1}(U) \to U$ is the morphism
$$
\Spec\left(\prod \kappa(\mathfrak q_i)\right)
\longrightarrow
\Spec(A)
$$
where $f : Y \to X$ is the morphism (\ref{equation-generic-points}).
Hence (4) follows from (2) and (3).
\end{proof}

\begin{lemma}
Expand Down Expand Up @@ -14142,7 +14235,9 @@ \section{Normalization}
The morphism $\nu$ is integral by Lemma \ref{lemma-characterize-normalization}.
By Lemma \ref{lemma-normal-normalization} the
morphism $Y \to X^\nu$ induces a bijection on irreducible components,
and by construction of $Y$ this implies that $X^\nu \to X$ induces
and by Topology, Lemma
\ref{topology-lemma-bijection-irreducible-components-2-out-of-3},
this implies that $X^\nu \to X$ induces
a bijection on irreducible components. By construction $f : Y \to X$
is dominant, hence also $\nu$ is dominant. Since an integral morphism is
closed (Lemma \ref{lemma-integral-universally-closed}) this implies that
Expand Down
Loading