@@ -44,7 +44,7 @@ def _prepare_fit(self, data=None, features=None, metadata=None,
4444 zip (dataloader , data .samples ))
4545 if n is None :
4646 n = len (data )
47- elif "keras" in str (type (data )):
47+ elif "keras" in str (type (data )): # pragma: no cover
4848 self .module_ = "keras"
4949 iter_images = data
5050 # We delay the import as keras backend is not necessarily installed.
@@ -120,15 +120,15 @@ def kneighbors(self, iter_images, n_neighbors=None):
120120 *meta* is the metadata.
121121 """
122122 if isinstance (iter_images , numpy .ndarray ):
123- if self .module_ == "keras" :
123+ if self .module_ == "keras" : # pragma: no cover
124124 raise NotImplementedError ("Not yet implemented or Keras." )
125125 elif self .module_ == "torch" :
126126 from torch import from_numpy # pylint: disable=E0611,E0401,C0415
127127 X = from_numpy (iter_images [numpy .newaxis , :, :, :])
128128 return super ().kneighbors (X , n_neighbors = n_neighbors )
129- raise RuntimeError (
129+ raise RuntimeError ( # pragma: no cover
130130 "Unknown module '{0}'." .format (self .module_ ))
131- elif "keras" in str (iter_images ):
131+ elif "keras" in str (iter_images ): # pragma: no cover
132132 if self .module_ != "keras" :
133133 raise RuntimeError ( # pragma: no cover
134134 "Keras object but {0} was used to train the KNN." .format (self .module_ ))
0 commit comments