|
| 1 | +""" |
| 2 | +@file |
| 3 | +@brief Metrics to compare machine learning. |
| 4 | +""" |
| 5 | +import numpy |
| 6 | +from sklearn.metrics import r2_score |
| 7 | + |
| 8 | +_known_functions = { |
| 9 | + 'exp': numpy.exp, |
| 10 | + 'log': numpy.log |
| 11 | +} |
| 12 | + |
| 13 | + |
| 14 | +def comparable_metric(metric_function, y_true, y_pred, |
| 15 | + tr="log", inv_tr='exp', **kwargs): |
| 16 | + """ |
| 17 | + Applies function on either the true target or/and the predictions |
| 18 | + before computing r2 score. |
| 19 | +
|
| 20 | + :param metric_function: metric to compute |
| 21 | + :param y_true: expected targets |
| 22 | + :param y_pred: predictions |
| 23 | + :param sample_weight: weights |
| 24 | + :param multioutput: see :epkg:`sklearn:metrics:r2_score` |
| 25 | + :param tr: transformation applied on the target |
| 26 | + :param inv_tr: transformation applied on the predictions |
| 27 | + :return: results |
| 28 | + """ |
| 29 | + tr = _known_functions.get(tr, tr) |
| 30 | + inv_tr = _known_functions.get(inv_tr, inv_tr) |
| 31 | + if tr is not None and not callable(tr): |
| 32 | + raise TypeError("Argument tr must be callable.") |
| 33 | + if inv_tr is not None and not callable(inv_tr): |
| 34 | + raise TypeError("Argument inv_tr must be callable.") |
| 35 | + if tr is None and inv_tr is None: |
| 36 | + raise ValueError( |
| 37 | + "tr and inv_tr cannot be both None at the same time.") |
| 38 | + if tr is None: |
| 39 | + return metric_function(y_true, inv_tr(y_pred), **kwargs) |
| 40 | + if inv_tr is None: |
| 41 | + return metric_function(tr(y_true), y_pred, **kwargs) |
| 42 | + return metric_function(tr(y_true), inv_tr(y_pred), **kwargs) |
| 43 | + |
| 44 | + |
| 45 | +def r2_score_comparable(y_true, y_pred, *, sample_weight=None, |
| 46 | + multioutput='uniform_average', |
| 47 | + tr=None, inv_tr=None): |
| 48 | + """ |
| 49 | + Applies function on either the true target or/and the predictions |
| 50 | + before computing r2 score. |
| 51 | +
|
| 52 | + :param y_true: expected targets |
| 53 | + :param y_pred: predictions |
| 54 | + :param sample_weight: weights |
| 55 | + :param multioutput: see :epkg:`sklearn:metrics:r2_score` |
| 56 | + :param tr: transformation applied on the target |
| 57 | + :param inv_tr: transformation applied on the predictions |
| 58 | + :return: results |
| 59 | +
|
| 60 | + Example: |
| 61 | +
|
| 62 | + .. runpython:: |
| 63 | + :showcode: |
| 64 | +
|
| 65 | + import numpy |
| 66 | + from sklearn import datasets |
| 67 | + from sklearn.model_selection import train_test_split |
| 68 | + from sklearn.linear_model import LinearRegression |
| 69 | + from sklearn.metrics import r2_score |
| 70 | + from mlinsights.metrics import r2_score_comparable |
| 71 | +
|
| 72 | + iris = datasets.load_iris() |
| 73 | + X = iris.data[:, :4] |
| 74 | + y = iris.target + 1 |
| 75 | +
|
| 76 | + X_train, X_test, y_train, y_test = train_test_split(X, y) |
| 77 | +
|
| 78 | + model1 = LinearRegression().fit(X_train, y_train) |
| 79 | + print('r2', r2_score(y_test, model1.predict(X_test))) |
| 80 | + print('r2 log', r2_score(numpy.log(y_test), numpy.log(model1.predict(X_test)))) |
| 81 | + print('r2 log comparable', r2_score_comparable( |
| 82 | + y_test, model1.predict(X_test), tr="log", inv_tr="log")) |
| 83 | +
|
| 84 | + model2 = LinearRegression().fit(X_train, numpy.log(y_train)) |
| 85 | + print('r2', r2_score(numpy.log(y_test), model2.predict(X_test))) |
| 86 | + print('r2 log', r2_score(y_test, numpy.exp(model2.predict(X_test)))) |
| 87 | + print('r2 log comparable', r2_score_comparable( |
| 88 | + y_test, model2.predict(X_test), inv_tr="exp")) |
| 89 | + """ |
| 90 | + return comparable_metric(r2_score, y_true, y_pred, |
| 91 | + sample_weight=sample_weight, |
| 92 | + multioutput=multioutput, |
| 93 | + tr=tr, inv_tr=inv_tr) |
0 commit comments