Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions metric_learn/_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,11 @@ def check_input(input_data, y=None, preprocessor=None,
input_data = check_input_tuples(input_data, context, preprocessor,
args_for_sk_checks, tuple_size)

# if we have y and the input data are pairs, we need to ensure
# the labels are in [-1, 1]:
if y is not None and input_data.shape[1] == 2:
check_y_valid_values_for_pairs(y)

else:
raise ValueError("Unknown value {} for type_of_inputs. Valid values are "
"'classic' or 'tuples'.".format(type_of_inputs))
Expand Down Expand Up @@ -297,6 +302,13 @@ def check_tuple_size(tuples, tuple_size, context):
raise ValueError(msg_t)


def check_y_valid_values_for_pairs(y):
"""Checks that y values are in [-1, 1]"""
if not np.array_equal(np.abs(y), np.ones_like(y)):
raise ValueError("When training on pairs, the labels (y) should contain "
"only values in [-1, 1]. Found an incorrect value.")


class ArrayIndexer:

def __init__(self, X):
Expand Down
73 changes: 72 additions & 1 deletion test/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@
from metric_learn._util import (check_input, make_context, preprocess_tuples,
make_name, preprocess_points,
check_collapsed_pairs, validate_vector,
_check_sdp_from_eigen)
_check_sdp_from_eigen,
check_y_valid_values_for_pairs)
from metric_learn import (ITML, LSML, MMC, RCA, SDML, Covariance, LFDA,
LMNN, MLKR, NCA, ITML_Supervised, LSML_Supervised,
MMC_Supervised, RCA_Supervised, SDML_Supervised,
Expand Down Expand Up @@ -1067,3 +1068,73 @@ def test_check_sdp_from_eigen_positive_err_messages():
_check_sdp_from_eigen(w, 1.)
_check_sdp_from_eigen(w, 0.)
_check_sdp_from_eigen(w, None)


@pytest.mark.unit
@pytest.mark.parametrize('wrong_labels',
[[0.5, 0.6, 0.7, 0.8, 0.9],
np.random.RandomState(42).randn(5),
np.random.RandomState(42).choice([0, 1], size=5)])
def test_check_y_valid_values_for_pairs(wrong_labels):
expected_msg = ("When training on pairs, the labels (y) should contain "
"only values in [-1, 1]. Found an incorrect value.")
with pytest.raises(ValueError) as raised_error:
check_y_valid_values_for_pairs(wrong_labels)
assert str(raised_error.value) == expected_msg


@pytest.mark.integration
@pytest.mark.parametrize('wrong_labels',
[[0.5, 0.6, 0.7, 0.8, 0.9],
np.random.RandomState(42).randn(5),
np.random.RandomState(42).choice([0, 1], size=5)])
def test_check_input_invalid_tuples_without_preprocessor(wrong_labels):
pairs = np.random.RandomState(42).randn(5, 2, 3)
expected_msg = ("When training on pairs, the labels (y) should contain "
"only values in [-1, 1]. Found an incorrect value.")
with pytest.raises(ValueError) as raised_error:
check_input(pairs, wrong_labels, preprocessor=None,
type_of_inputs='tuples')
assert str(raised_error.value) == expected_msg


@pytest.mark.integration
@pytest.mark.parametrize('wrong_labels',
[[0.5, 0.6, 0.7, 0.8, 0.9],
np.random.RandomState(42).randn(5),
np.random.RandomState(42).choice([0, 1], size=5)])
def test_check_input_invalid_tuples_with_preprocessor(wrong_labels):
n_samples, n_features, n_pairs = 10, 4, 5
rng = np.random.RandomState(42)
pairs = rng.randint(10, size=(n_pairs, 2))
preprocessor = rng.randn(n_samples, n_features)
expected_msg = ("When training on pairs, the labels (y) should contain "
"only values in [-1, 1]. Found an incorrect value.")
with pytest.raises(ValueError) as raised_error:
check_input(pairs, wrong_labels, preprocessor=ArrayIndexer(preprocessor),
type_of_inputs='tuples')
assert str(raised_error.value) == expected_msg


@pytest.mark.integration
@pytest.mark.parametrize('with_preprocessor', [True, False])
@pytest.mark.parametrize('estimator, build_dataset', pairs_learners,
ids=ids_pairs_learners)
def test_check_input_pairs_learners_invalid_y(estimator, build_dataset,
with_preprocessor):
"""checks that the only allowed labels for learning pairs are +1 and -1"""
input_data, labels, _, X = build_dataset()
wrong_labels_list = [labels + 0.5,
np.random.RandomState(42).randn(len(labels)),
np.random.RandomState(42).choice([0, 1],
size=len(labels))]
model = clone(estimator)
set_random_state(model)

expected_msg = ("When training on pairs, the labels (y) should contain "
"only values in [-1, 1]. Found an incorrect value.")

for wrong_labels in wrong_labels_list:
with pytest.raises(ValueError) as raised_error:
model.fit(input_data, wrong_labels)
assert str(raised_error.value) == expected_msg