Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions docs/CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,11 @@
# What's new in boost-histogram

## UPCOMING

* Support running type checking from Python < 3.8 [#542][]

[#542]: https://github.com/scikit-hep/boost-histogram/pull/542

## Version 1.0

### Version 1.0.1
Expand Down
16 changes: 6 additions & 10 deletions src/boost_histogram/_core/accumulators.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ class WeightedSum(_BaseAccumulator):
def value(self) -> float: ...
@property
def variance(self) -> float: ...
def __iadd__(self: T, val: float, /) -> T: ...
def __iadd__(self: T, arg0: float) -> T: ...
def fill(self: T, value: ArrayLike, variance: ArrayLike | None = None) -> T: ...
@staticmethod
def _make(self: T, a: ArrayLike, b: ArrayLike) -> T: ...
Expand All @@ -32,7 +32,7 @@ class Sum(_BaseAccumulator):
def __init__(self, value: float | None) -> None: ...
@property
def value(self) -> float: ...
def __iadd__(self: T, val: float, /) -> T: ...
def __iadd__(self: T, arg0: float) -> T: ...
def fill(self: T, value: ArrayLike) -> T: ...
@property
def _small(self) -> float: ...
Expand Down Expand Up @@ -63,11 +63,11 @@ class WeightedMean(_BaseAccumulator):
def fill(self: T, value: ArrayLike, *, weight: ArrayLike | None = None) -> T: ...
@staticmethod
def _make(
self: T, a: ArrayLike, b: ArrayLike, c: ArrayLike, d: ArrayLike, /
self: T, arg0: ArrayLike, arg1: ArrayLike, arg2: ArrayLike, arg3: ArrayLike
) -> T: ...
@staticmethod
def _array(
self: T, a: ArrayLike, b: ArrayLike, c: ArrayLike, d: ArrayLike, /
self: T, arg0: ArrayLike, arg1: ArrayLike, arg2: ArrayLike, arg3: ArrayLike
) -> T: ...
def __getitem__(self, key: str) -> float: ...
def __setitem__(self, key: str, value: float) -> None: ...
Expand All @@ -87,12 +87,8 @@ class Mean(_BaseAccumulator):
) -> T: ...
def fill(self: T, value: ArrayLike, *, weight: ArrayLike | None = None) -> T: ...
@staticmethod
def _make(
self: T, a: ArrayLike, b: ArrayLike, c: ArrayLike, d: ArrayLike, /
) -> T: ...
def _make(self: T, arg0: ArrayLike, arg1: ArrayLike, arg2: ArrayLike) -> T: ...
@staticmethod
def _array(
self: T, a: ArrayLike, b: ArrayLike, c: ArrayLike, d: ArrayLike, /
) -> T: ...
def _array(self: T, arg0: ArrayLike, arg1: ArrayLike, arg2: ArrayLike) -> T: ...
def __getitem__(self, key: str) -> float: ...
def __setitem__(self, key: str, value: float) -> None: ...
8 changes: 4 additions & 4 deletions tests/test_accumulators.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ def test_mean():


float_st = st.floats(
allow_nan=False, allow_infinity=False, min_value=-1e5, max_value=1e5
allow_nan=False, allow_infinity=False, min_value=-1e4, max_value=1e4
)
simple_list_st = st.lists(float_st, min_size=1, max_size=10)

Expand Down Expand Up @@ -129,7 +129,7 @@ def test_sum_mean(list1, list2):
st.lists(float_st, min_size=n, max_size=n),
st.lists(
st.floats(
allow_nan=False, allow_infinity=False, min_value=1e-2, max_value=1e3
allow_nan=False, allow_infinity=False, min_value=1e-2, max_value=1e2
),
min_size=n,
max_size=n,
Expand All @@ -151,12 +151,12 @@ def test_sum_weighed_mean(pair1, pair2):

ab = a + b
assert ab.value == approx(c.value)
assert ab.variance == approx(c.variance, nan_ok=True, abs=1e-7, rel=1e-3)
assert ab.variance == approx(c.variance, nan_ok=True, abs=1e-3, rel=1e-2)
assert ab.sum_of_weights == approx(c.sum_of_weights)
assert ab.sum_of_weights_squared == approx(c.sum_of_weights_squared)

a += b
assert a.value == approx(c.value)
assert a.variance == approx(c.variance, nan_ok=True, abs=1e-7, rel=1e-3)
assert a.variance == approx(c.variance, nan_ok=True, abs=1e-3, rel=1e-2)
assert a.sum_of_weights == approx(c.sum_of_weights)
assert a.sum_of_weights_squared == approx(c.sum_of_weights_squared)