Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/doc/de/tutorial/tour_groups.rst
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ erhalten:
::

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: latex(G.character_table())
sage: latex(G.character_table()) # random
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\
Expand Down
26 changes: 13 additions & 13 deletions src/doc/en/constructions/rep_theory.rst
Original file line number Diff line number Diff line change
Expand Up @@ -23,14 +23,14 @@ interface to the GAP command ``CharacterTable``.
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: G.order()
8
sage: G.character_table()
sage: G.character_table() # random
[ 1 1 1 1 1]
[ 1 -1 -1 1 1]
[ 1 -1 1 -1 1]
[ 1 1 -1 -1 1]
[ 2 0 0 0 -2]
sage: CT = libgap(G).CharacterTable()
sage: CT.Display()
sage: CT.Display() # random
CT1
<BLANKLINE>
2 3 2 2 2 3
Expand All @@ -50,15 +50,15 @@ Here is another example:
::

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: G.character_table()
sage: G.character_table() # random
[ 1 1 1 1]
[ 1 -zeta3 - 1 zeta3 1]
[ 1 zeta3 -zeta3 - 1 1]
[ 3 0 0 -1]
sage: G = libgap.eval("Group((1,2)(3,4),(1,2,3))"); G
Group([ (1,2)(3,4), (1,2,3) ])
sage: T = G.CharacterTable()
sage: T.Display()
sage: T.Display() # random
CT2
<BLANKLINE>
2 2 . . 2
Expand All @@ -85,12 +85,12 @@ Python command. This makes the output look much nicer.

::

sage: irr = G.Irr(); irr
[ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, E(3)^2, E(3), 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, E(3), E(3)^2, 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 3, 0, 0, -1 ] ) ]
sage: irr.Display()
sage: irr = G.Irr(); sorted(irr)
[Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, E(3)^2, E(3), 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, E(3), E(3)^2, 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 3, 0, 0, -1 ] )]
sage: irr.Display() # random
[ [ 1, 1, 1, 1 ],
[ 1, E(3)^2, E(3), 1 ],
[ 1, E(3), E(3)^2, 1 ],
Expand All @@ -101,9 +101,9 @@ Python command. This makes the output look much nicer.
(2,4,3)^G
sage: g = gamma.Representative(); g
(2,4,3)
sage: chi = irr[1]; chi
sage: chi = irr[1]; chi # random
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, E(3)^2, E(3), 1 ] )
sage: g^chi
sage: g^chi # random
E(3)

This last quantity is the value of the character ``chi`` at the group
Expand Down Expand Up @@ -188,7 +188,7 @@ The example below using the GAP interface illustrates the syntax.
[ 1, 1, 1, 1 ],
[ 3, -1, 0, 0 ] ]
sage: T = G.CharacterTable()
sage: T.Display()
sage: T.Display() # random
CT3
<BLANKLINE>
2 2 . . 2
Expand Down
6 changes: 3 additions & 3 deletions src/doc/en/thematic_tutorials/lie/weyl_groups.rst
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,7 @@ and whose values are the roots, you may use the inverse family::
The Weyl group is implemented as a GAP matrix group. You therefore can
display its character table as follows::

sage: WeylGroup("D4").character_table()
sage: WeylGroup("D4").character_table() # random
CT1
<BLANKLINE>
2 6 4 5 1 3 5 5 4 3 3 1 4 6
Expand Down Expand Up @@ -224,8 +224,8 @@ this as follows::
sage: [s1,s2] = W.simple_reflections()
sage: def bi(u,v) : return [t for t in W if u.bruhat_le(t) and t.bruhat_le(v)]
...
sage: bi(s1,s1*s2*s1)
[s1*s2, s2*s1, s1, s1*s2*s1]
sage: sorted(bi(s1,s1*s2*s1))
[s1*s2*s1, s1*s2, s2*s1, s1]

This would not be a good definition since it would fail if `W` is
affine and be inefficient of `W` is large. Sage has a Bruhat interval
Expand Down
2 changes: 1 addition & 1 deletion src/doc/en/tutorial/tour_groups.rst
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ You can also obtain the character table (in LaTeX format) in Sage:
::

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: latex(G.character_table())
sage: latex(G.character_table()) # random
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\
Expand Down
2 changes: 1 addition & 1 deletion src/doc/es/tutorial/tour_groups.rst
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ código LaTeX):
::

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: latex(G.character_table())
sage: latex(G.character_table()) # random
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\
Expand Down
2 changes: 1 addition & 1 deletion src/doc/fr/tutorial/tour_groups.rst
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ On peut obtenir la table des caractères (au format LaTeX) à partir de Sage :
::

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: latex(G.character_table())
sage: latex(G.character_table()) # random
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\
Expand Down
2 changes: 1 addition & 1 deletion src/doc/ja/tutorial/tour_groups.rst
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ Sageを使えば(LaTeX形式で)指標表を作ることもできる:
::

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: latex(G.character_table())
sage: latex(G.character_table()) # random
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\
Expand Down
2 changes: 1 addition & 1 deletion src/doc/pt/tutorial/tour_groups.rst
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ Sage:
::

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: latex(G.character_table())
sage: latex(G.character_table()) # random
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\
Expand Down
2 changes: 1 addition & 1 deletion src/doc/ru/tutorial/tour_groups.rst
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ Sage поддерживает вычисления с группами пере
::

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: latex(G.character_table())
sage: latex(G.character_table()) # random
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\
Expand Down
26 changes: 13 additions & 13 deletions src/doc/zh/constructions/rep_theory.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,14 +20,14 @@
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: G.order()
8
sage: G.character_table()
sage: G.character_table() # random
[ 1 1 1 1 1]
[ 1 -1 -1 1 1]
[ 1 -1 1 -1 1]
[ 1 1 -1 -1 1]
[ 2 0 0 0 -2]
sage: CT = libgap(G).CharacterTable()
sage: CT.Display()
sage: CT.Display() # random
CT1
<BLANKLINE>
2 3 2 2 2 3
Expand All @@ -47,15 +47,15 @@
::

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: G.character_table()
sage: G.character_table() # random
[ 1 1 1 1]
[ 1 -zeta3 - 1 zeta3 1]
[ 1 zeta3 -zeta3 - 1 1]
[ 3 0 0 -1]
sage: G = libgap.eval("Group((1,2)(3,4),(1,2,3))"); G
Group([ (1,2)(3,4), (1,2,3) ])
sage: T = G.CharacterTable()
sage: T.Display()
sage: T.Display() # random
CT2
<BLANKLINE>
2 2 . . 2
Expand All @@ -81,12 +81,12 @@

::

sage: irr = G.Irr(); irr
[ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, E(3)^2, E(3), 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, E(3), E(3)^2, 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 3, 0, 0, -1 ] ) ]
sage: irr.Display()
sage: irr = G.Irr(); sorted(irr)
[Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, E(3)^2, E(3), 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, E(3), E(3)^2, 1 ] ),
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 3, 0, 0, -1 ] )]
sage: irr.Display() # random
[ [ 1, 1, 1, 1 ],
[ 1, E(3)^2, E(3), 1 ],
[ 1, E(3), E(3)^2, 1 ],
Expand All @@ -97,9 +97,9 @@
(2,4,3)^G
sage: g = gamma.Representative(); g
(2,4,3)
sage: chi = irr[1]; chi
sage: chi = irr[1]; chi # random
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, E(3)^2, E(3), 1 ] )
sage: g^chi
sage: g^chi # random
E(3)

最后一个量是特征 ``chi`` 在群元素 ``g`` 处的值。
Expand Down Expand Up @@ -181,7 +181,7 @@ GAP 中的布劳尔特征标表尚未具有“原生”接口。
[ 1, 1, 1, 1 ],
[ 3, -1, 0, 0 ] ]
sage: T = G.CharacterTable()
sage: T.Display()
sage: T.Display() # random
CT3
<BLANKLINE>
2 2 . . 2
Expand Down
2 changes: 1 addition & 1 deletion src/doc/zh/tutorial/tour_groups.rst
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ Sage 支持置换群、有限经典群(例如 `SU(n,q)`)、有限矩阵群
::

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
sage: latex(G.character_table())
sage: latex(G.character_table()) # random
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\
Expand Down
Loading
Loading