Skip to content
4 changes: 2 additions & 2 deletions src/sage/doctest/fixtures.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,9 +80,9 @@ def reproducible_repr(val):
frozenset(['a', 'b', 'c', 'd'])
sage: print(reproducible_repr([1, frozenset("cab"), set("bar"), 0]))
[1, frozenset(['a', 'b', 'c']), set(['a', 'b', 'r']), 0]
sage: print(reproducible_repr({3.0:"three","2":"two",1:"one"}))
sage: print(reproducible_repr({3.0: "three", "2": "two", 1: "one"})) # optional - sage.rings.real_mpfr
{'2': 'two', 1: 'one', 3.00000000000000: 'three'}
sage: print(reproducible_repr("foo\nbar")) # demonstrate default case
sage: print(reproducible_repr("foo\nbar")) # demonstrate default case
'foo\nbar'
"""

Expand Down
2 changes: 1 addition & 1 deletion src/sage/ext/fast_callable.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -1645,7 +1645,7 @@ class IntegerPowerFunction():
pi^2
sage: square(I) # needs sage.symbolic
-1
sage: square(RIF(-1, 1)).str(style='brackets')
sage: square(RIF(-1, 1)).str(style='brackets') # needs sage.rings.real_interval_field
'[0.0000000000000000 .. 1.0000000000000000]'
sage: IntegerPowerFunction(-1)
(^(-1))
Expand Down
1 change: 1 addition & 0 deletions src/sage/libs/coxeter3/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# sage_setup: distribution = sagemath-coxeter3
1 change: 1 addition & 0 deletions src/sage/libs/coxeter3/all__sagemath_coxeter3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# sage_setup: distribution = sagemath-coxeter3
2 changes: 2 additions & 0 deletions src/sage/structure/coerce.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -517,6 +517,8 @@ cdef class CoercionModel:
Check that :trac:`8426` is fixed (see also :trac:`18076`)::

sage: import numpy # needs numpy

sage: # needs sage.rings.real_mpfr
sage: x = polygen(RR)
sage: numpy.float32('1.5') * x # needs numpy
1.50000000000000*x
Expand Down
7 changes: 4 additions & 3 deletions src/sage/structure/factorization.py
Original file line number Diff line number Diff line change
Expand Up @@ -1232,9 +1232,10 @@ def __call__(self, *args, **kwds):
sage: F(t=0)
0

sage: R.<x> = LaurentPolynomialRing(QQ, 1) # needs sage.modules
sage: F = ((x+2)/x**3).factor() # needs sage.modules
sage: F(x=4) # needs sage.modules
sage: # needs sage.libs.pari sage.modules
sage: R.<x> = LaurentPolynomialRing(QQ, 1)
sage: F = ((x+2)/x**3).factor()
sage: F(x=4)
1/64 * 6
"""
unit = self.__unit.subs(*args, **kwds)
Expand Down
2 changes: 1 addition & 1 deletion src/sage/structure/parent_old.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ cdef class Parent(parent.Parent):
[(0, 0), (1, 0), (0, 1), (1, 1)]
sage: MatrixSpace(GF(3), 1, 1).list()
[[0], [1], [2]]
sage: DirichletGroup(3).list() # needs sage.modular
sage: DirichletGroup(3).list() # needs sage.libs.pari sage.modular
[Dirichlet character modulo 3 of conductor 1 mapping 2 |--> 1,
Dirichlet character modulo 3 of conductor 3 mapping 2 |--> -1]

Expand Down
7 changes: 4 additions & 3 deletions src/sage/symbolic/function.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -642,10 +642,11 @@ cdef class Function(SageObject):
sage: hurwitz_zeta(1/2, b)
hurwitz_zeta(1/2, [1.500000000 +/- 1.01e-10])

sage: iv = RIF(1, 1.0001)
sage: airy_ai(iv)
sage: iv = RIF(1, 1.0001) # needs sage.rings.real_interval_field

sage: airy_ai(iv) # needs sage.rings.real_interval_field
airy_ai(1.0001?)
sage: airy_ai(CIF(iv))
sage: airy_ai(CIF(iv)) # needs sage.rings.complex_interval_field
airy_ai(1.0001?)
"""
if isinstance(x, (float, complex)):
Expand Down
45 changes: 23 additions & 22 deletions src/sage/tests/article_heuberger_krenn_kropf_fsm-in-sage.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# sage.doctest: needs sage.graphs sage.modules
r"""
This file contains doctests of the article ::

Expand Down Expand Up @@ -505,11 +506,11 @@

Sage example in fsm-in-sage.tex, line 1091::

sage: var('y')
sage: var('y') # needs sage.symbolic
y
sage: def am_entry(trans):
....: return y^add(trans.word_out) / 2
sage: A = W.adjacency_matrix(entry=am_entry)
sage: A = W.adjacency_matrix(entry=am_entry) # needs sage.symbolic


Sage example in fsm-in-sage.tex, line 1097::
Expand All @@ -519,7 +520,7 @@

Sage example in fsm-in-sage.tex, line 1099::

sage: latex(A)
sage: latex(A) # needs sage.symbolic
\left(\begin{array}{ccccccccc}
\frac{1}{2} & \frac{1}{2} \, y^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
Expand All @@ -535,95 +536,95 @@

Sage example in fsm-in-sage.tex, line 1109::

sage: (pi_not_normalized,) = (A.subs(y=1) - A.parent().identity_matrix())\
....: .left_kernel().basis()
sage: pi = pi_not_normalized / pi_not_normalized.norm(p=1)
sage: A1mI = (A.subs(y=1) - A.parent().identity_matrix()) # needs sage.symbolic
sage: (pi_not_normalized,) = A1mI.left_kernel().basis() # needs sage.symbolic
sage: pi = pi_not_normalized / pi_not_normalized.norm(p=1) # needs sage.symbolic


Sage example in fsm-in-sage.tex, line 1110::

sage: str(pi)
sage: str(pi) # needs sage.symbolic
'(1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9)'


Sage example in fsm-in-sage.tex, line 1117::

sage: expected_output = derivative(A, y).subs(y=1) * vector(len(W.states())*[1])
sage: expected_output = derivative(A, y).subs(y=1) * vector(len(W.states())*[1]) # needs sage.symbolic


Sage example in fsm-in-sage.tex, line 1118::

sage: latex(expected_output)
sage: latex(expected_output) # needs sage.symbolic
\left(1,\,0,\,0,\,0,\,\frac{1}{2},\,1,\,1,\,\frac{1}{2},\,1\right)


Sage example in fsm-in-sage.tex, line 1126::

sage: pi * expected_output
sage: pi * expected_output # needs sage.symbolic
5/9


Sage example in fsm-in-sage.tex, line 1127::

sage: latex(pi * expected_output)
sage: latex(pi * expected_output) # needs sage.symbolic
\frac{5}{9}


Sage example in fsm-in-sage.tex, line 1129::

sage: latex(pi * expected_output)
sage: latex(pi * expected_output) # needs sage.symbolic
\frac{5}{9}


Sage example in fsm-in-sage.tex, line 1145::

sage: var('k')
sage: var('k') # needs sage.symbolic
k
sage: moments = W.asymptotic_moments(k)
sage: moments = W.asymptotic_moments(k) # needs sage.symbolic


Sage example in fsm-in-sage.tex, line 1155::

sage: latex(moments['expectation'])
sage: latex(moments['expectation']) # needs sage.symbolic
\frac{5}{9} \, k + \mathcal{O}\left(1\right)


Sage example in fsm-in-sage.tex, line 1162::

sage: latex(moments['variance'])
sage: latex(moments['variance']) # needs sage.symbolic
\frac{44}{243} \, k + \mathcal{O}\left(1\right)


Sage example in fsm-in-sage.tex, line 1192::

sage: expectation_binary = Id.asymptotic_moments(k)['expectation']
sage: expectation_binary = Id.asymptotic_moments(k)['expectation'] # needs sage.symbolic


Sage example in fsm-in-sage.tex, line 1195::

sage: latex(expectation_binary)
sage: latex(expectation_binary) # needs sage.symbolic
\frac{1}{2} \, k + \mathcal{O}\left(1\right)


Sage example in fsm-in-sage.tex, line 1202::

sage: expectation_NAF = Weight(NAF).asymptotic_moments(k)['expectation']
sage: expectation_NAF = Weight(NAF).asymptotic_moments(k)['expectation'] # needs sage.symbolic


Sage example in fsm-in-sage.tex, line 1205::

sage: latex(expectation_NAF)
sage: latex(expectation_NAF) # needs sage.symbolic
\frac{1}{3} \, k + \mathcal{O}\left(1\right)


Sage example in fsm-in-sage.tex, line 1211::

sage: Abs = transducers.abs([-1, 0, 1])
sage: Abs = transducers.abs([-1, 0, 1]) # needs sage.symbolic


Sage example in fsm-in-sage.tex, line 1216::

sage: latex(moments['expectation'])
sage: latex(moments['expectation']) # needs sage.symbolic
\frac{5}{9} \, k + \mathcal{O}\left(1\right)

"""
1 change: 1 addition & 0 deletions src/sage/tests/arxiv_0812_2725.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# sage.doctest: needs sage.combinat
r"""
Sage code for computing k-distant crossing numbers.

Expand Down
1 change: 1 addition & 0 deletions src/sage/tests/benchmark.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# sage.doctest: needs sage.symbolic
"""
Benchmarks

Expand Down
14 changes: 8 additions & 6 deletions src/sage/tests/book_schilling_zabrocki_kschur_primer.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# sage.doctest: needs sage.combinat sage.graphs sage.groups
r"""
This file contains doctests for the Chapter "k-Schur function primer"
for the book "k-Schur functions and affine Schubert calculus"
Expand Down Expand Up @@ -83,16 +84,17 @@

Sage example in ./kschurnotes/notes-mike-anne.tex, line 406::

sage: w = W.an_element(); w # long time
sage: # long time
sage: w = W.an_element(); w
[ 2 0 0 1 -2]
[ 2 0 0 0 -1]
[ 1 1 0 0 -1]
[ 1 0 1 0 -1]
[ 1 0 0 1 -1]
sage: w.reduced_word() # long time
sage: w.reduced_word()
[0, 1, 2, 3, 4]
sage: w = W.from_reduced_word([2,1,0]) # long time
sage: w.is_affine_grassmannian() # long time
sage: w = W.from_reduced_word([2,1,0])
sage: w.is_affine_grassmannian()
True

Sage example in ./kschurnotes/notes-mike-anne.tex, line 464::
Expand Down Expand Up @@ -576,8 +578,8 @@

Sage example in ./kschurnotes/notes-mike-anne.tex, line 4055::

sage: t = var('t')
sage: for mu in Partitions(5):
sage: t = var('t') # needs sage.symbolic
sage: for mu in Partitions(5): # needs sage.symbolic
....: print("{} {}".format(mu, sum(t^T.spin() for T in StrongTableaux(3,[4,1,1],mu))))
[5] 0
[4, 1] t
Expand Down
35 changes: 22 additions & 13 deletions src/sage/tests/book_stein_ent.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# sage.doctest: needs sage.libs.pari
"""
This file contains all the example code from the published book
'Elementary Number Theory: Primes, Congruences, and Secrets' by
Expand Down Expand Up @@ -32,7 +33,7 @@
sage: n.is_prime() # this is instant
False
sage: p = 2^32582657 - 1
sage: p.ndigits()
sage: p.ndigits() # needs sage.rings.real_interval_field
9808358
sage: s = p.str(10) # this takes a long time
sage: len(s) # s is a very long string (long time)
Expand All @@ -41,18 +42,23 @@
'12457502601536945540'
sage: s[-20:] # the last 20 digits (long time)
'11752880154053967871'

sage: # needs sage.symbolic
sage: prime_pi(6)
3
sage: prime_pi(100)
25
sage: prime_pi(3000000)
216816

sage: # needs sage.plot sage.symbolic
sage: plot(prime_pi, 1,1000, rgbcolor=(0,0,1))
Graphics object consisting of 1 graphics primitive
sage: P = plot(Li, 2,10000, rgbcolor='purple')
sage: Q = plot(prime_pi, 2,10000, rgbcolor='black')
sage: R = plot(sqrt(x)*log(x),2,10000,rgbcolor='red')
sage: show(P+Q+R,xmin=0, figsize=[8,3])
sage: R = plot(sqrt(x)*log(x), 2,10000, rgbcolor='red')
sage: show(P + Q + R, xmin=0, figsize=[8,3])

sage: R = Integers(3)
sage: list(R)
[0, 1, 2]
Expand Down Expand Up @@ -157,15 +163,15 @@
1.09861228866811
sage: log(19683.0) / log(3.0)
9.00000000000000
sage: plot(log, 0.1,10, rgbcolor=(0,0,1))
sage: plot(log, 0.1, 10, rgbcolor=(0,0,1)) # needs sage.plot
Graphics object consisting of 1 graphics primitive
sage: p = 53
sage: R = Integers(p)
sage: a = R.multiplicative_generator()
sage: v = sorted([(a^n, n) for n in range(p-1)])
sage: G = plot(point(v,pointsize=50,rgbcolor=(0,0,1)))
sage: H = plot(line(v,rgbcolor=(0.5,0.5,0.5)))
sage: G + H
sage: G = plot(point(v,pointsize=50,rgbcolor=(0,0,1))) # needs sage.plot
sage: H = plot(line(v,rgbcolor=(0.5,0.5,0.5))) # needs sage.plot
sage: G + H # needs sage.plot
Graphics object consisting of 2 graphics primitives
sage: q = 93450983094850938450983409623
sage: q.is_prime()
Expand Down Expand Up @@ -421,11 +427,14 @@
[1, 2, 7, 30, 157]
sage: c = continued_fraction([1,1,1,1,1,1,1,1])
sage: v = [(i, c.p(i)/c.q(i)) for i in range(len(c))]

sage: # needs sage.plot
sage: P = point(v, rgbcolor=(0,0,1), pointsize=40)
sage: L = line(v, rgbcolor=(0.5,0.5,0.5))
sage: L2 = line([(0,c.value()),(len(c)-1,c.value())], \
....: thickness=0.5, rgbcolor=(0.7,0,0))
sage: (L+L2+P).show(xmin=0,ymin=1)
sage: L2 = line([(0,c.value()), (len(c)-1,c.value())],
....: thickness=0.5, rgbcolor=(0.7,0,0))
sage: (L + L2 + P).show(xmin=0, ymin=1)

sage: def cf(bits):
....: x = (1 + sqrt(RealField(bits)(5))) / 2
....: return continued_fraction(x)
Expand Down Expand Up @@ -497,13 +506,13 @@
sage: E
Elliptic Curve defined by y^2 = x^3 - 5*x + 4
over Rational Field
sage: P = E.plot(thickness=4,rgbcolor=(0.1,0.7,0.1))
sage: P.show(figsize=[4,6])
sage: P = E.plot(thickness=4,rgbcolor=(0.1,0.7,0.1)) # needs sage.plot
sage: P.show(figsize=[4,6]) # needs sage.plot
sage: E = EllipticCurve(GF(37), [1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x over
Finite Field of size 37
sage: E.plot(pointsize=45)
sage: E.plot(pointsize=45) # needs sage.plot
Graphics object consisting of 1 graphics primitive
sage: E = EllipticCurve([-5,4])
sage: P = E([1,0]); Q = E([0,2])
Expand Down
4 changes: 4 additions & 0 deletions src/sage/tests/book_stein_modform.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,12 @@
# sage_setup: distribution = sagemath-repl
# sage.doctest: needs sage.libs.flint sage.modular
"""
This file contains a bunch of tests extracted from the published book
'Modular Forms: a Computational Approach' by William Stein, AMS 2007.

TESTS::

sage: # needs sage.libs.gap
sage: G = SL(2,ZZ); G
Special Linear Group of degree 2 over Integer Ring
sage: S, T = G.gens()
Expand All @@ -13,6 +16,7 @@
sage: T
[1 1]
[0 1]

sage: delta_qexp(6)
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
sage: bernoulli(12)
Expand Down
Loading