Skip to content

Implement .compositional_inverse() for symbolic function #40286

@user202729

Description

@user202729

As in the title. Currently we have the following supported

sage: %xmode Minimal
Exception reporting mode: Minimal
sage: 1/0
ZeroDivisionError: rational division by zero

sage: R.<x> = LazyPowerSeriesRing(QQ)
sage: R(sqrt(x+1)-1)
1/2*x - 1/8*x^2 + 1/16*x^3 - 5/128*x^4 + 7/256*x^5 - 21/1024*x^6 + O(x^7)
sage: R(sqrt(x+1)-1).compositional_inverse()
2*x + x^2 + O(x^8)
sage: R(sqrt(x+1)-1).revert()
2*x + x^2 + O(x^8)
sage: R(sqrt(x+1)-1).revert_series()
AttributeError: 'LazyPowerSeriesRing_with_category.element_class' object has no attribute 'revert_series'

sage: R.<x> = QQ[[]]
sage: R(sqrt(x+1)-1)
1/2*x - 1/8*x^2 + 1/16*x^3 - 5/128*x^4 + 7/256*x^5 - 21/1024*x^6 + 33/2048*x^7 - 429/32768*x^8 + 715/65536*x^9 - 2431/262144*x^10 + 4199/524288*x^11 - 29393/4194304*x^12 + 52003/8388608*x^13 - 185725/33554432*x^14 + 334305/67108864*x^15 - 9694845/2147483648*x^16 + 17678835/4294967296*x^17 - 64822395/17179869184*x^18 + 119409675/34359738368*x^19 + O(x^20)
sage: R(sqrt(x+1)-1).compositional_inverse()
AttributeError: 'sage.rings.power_series_poly.PowerSeries_poly' object has no attribute 'compositional_inverse'

sage: R(sqrt(x+1)-1).polynomial().revert_series(10)
x^2 + 2*x
sage: var("x")
x
sage: f = (sqrt(x+1)-1).function(x); f
x |--> sqrt(x + 1) - 1
sage: f.compositional_inverse()
AttributeError: 'sage.symbolic.expression.Expression' object has no attribute 'compositional_inverse'

The last ought to work and return the symbolic function x |--> x^2+2*x.

There is #11202 but the proposed interface there appears rather unnatural. I think compositional_inverse() for a single variable is straightforward interface.

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions