Skip to content

principal and exponential specializations for symmetric functions #10930

@mantepse

Description

@mantepse

With this patch, you can now do:

sage: s = SymmetricFunctions(QQ).s()
sage: x = s[2,2,1]
sage: x.principal_specialization()
-q^4/(q^11 - 2*q^10 + q^8 + 2*q^6 - 2*q^5 - q^3 + 2*q - 1)
sage: x.principal_specialization(n=4)
q^11 + 2*q^10 + 3*q^9 + 4*q^8 + 4*q^7 + 3*q^6 + 2*q^5 + q^4
sage: x.exponential_specialization()
1/24*t^5
sage: x.exponential_specialization(q=QQ["q"].gen())
(q^4/(q^6 + 3*q^5 + 5*q^4 + 6*q^3 + 5*q^2 + 3*q + 1))*t^5

Implement the principal and exponential specializations for symmetric functions as given in Stanley, Enumerative Combinatorics, Section 7.8.

CC: @jbandlow @zabrocki @tscrim @darijgr

Component: combinatorics

Keywords: principal specialization, exponential specialization, symmetric functions

Author: Martin Rubey

Branch/Commit: cf9e0f2

Reviewer: Darij Grinberg, Mike Zabrocki

Issue created by migration from https://trac.sagemath.org/ticket/10930

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions