Skip to content
This repository was archived by the owner on Apr 28, 2025. It is now read-only.

Start converting fma to a generic function #463

Merged
merged 1 commit into from
Feb 5, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions etc/function-definitions.json
Original file line number Diff line number Diff line change
Expand Up @@ -344,13 +344,15 @@
},
"fma": {
"sources": [
"src/math/fma.rs"
"src/math/fma.rs",
"src/math/generic/fma.rs"
],
"type": "f64"
},
"fmaf": {
"sources": [
"src/math/fmaf.rs"
"src/math/fmaf.rs",
"src/math/generic/fma.rs"
],
"type": "f32"
},
Expand Down
192 changes: 3 additions & 189 deletions src/math/fma.rs
Original file line number Diff line number Diff line change
@@ -1,195 +1,9 @@
use core::{f32, f64};

use super::scalbn;

const ZEROINFNAN: i32 = 0x7ff - 0x3ff - 52 - 1;

struct Num {
m: u64,
e: i32,
sign: i32,
}

fn normalize(x: f64) -> Num {
let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63

let mut ix: u64 = x.to_bits();
let mut e: i32 = (ix >> 52) as i32;
let sign: i32 = e & 0x800;
e &= 0x7ff;
if e == 0 {
ix = (x * x1p63).to_bits();
e = (ix >> 52) as i32 & 0x7ff;
e = if e != 0 { e - 63 } else { 0x800 };
}
ix &= (1 << 52) - 1;
ix |= 1 << 52;
ix <<= 1;
e -= 0x3ff + 52 + 1;
Num { m: ix, e, sign }
}

#[inline]
fn mul(x: u64, y: u64) -> (u64, u64) {
let t = (x as u128).wrapping_mul(y as u128);
((t >> 64) as u64, t as u64)
}

/// Floating multiply add (f64)
/// Fused multiply add (f64)
///
/// Computes `(x*y)+z`, rounded as one ternary operation:
/// Computes the value (as if) to infinite precision and rounds once to the result format,
/// according to the rounding mode characterized by the value of FLT_ROUNDS.
/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision).
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn fma(x: f64, y: f64, z: f64) -> f64 {
let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63
let x0_ffffff8p_63 = f64::from_bits(0x3bfffffff0000000); // 0x0.ffffff8p-63

/* normalize so top 10bits and last bit are 0 */
let nx = normalize(x);
let ny = normalize(y);
let nz = normalize(z);

if nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN {
return x * y + z;
}
if nz.e >= ZEROINFNAN {
if nz.e > ZEROINFNAN {
/* z==0 */
return x * y + z;
}
return z;
}

/* mul: r = x*y */
let zhi: u64;
let zlo: u64;
let (mut rhi, mut rlo) = mul(nx.m, ny.m);
/* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */

/* align exponents */
let mut e: i32 = nx.e + ny.e;
let mut d: i32 = nz.e - e;
/* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
if d > 0 {
if d < 64 {
zlo = nz.m << d;
zhi = nz.m >> (64 - d);
} else {
zlo = 0;
zhi = nz.m;
e = nz.e - 64;
d -= 64;
if d == 0 {
} else if d < 64 {
rlo = (rhi << (64 - d)) | (rlo >> d) | ((rlo << (64 - d)) != 0) as u64;
rhi = rhi >> d;
} else {
rlo = 1;
rhi = 0;
}
}
} else {
zhi = 0;
d = -d;
if d == 0 {
zlo = nz.m;
} else if d < 64 {
zlo = (nz.m >> d) | ((nz.m << (64 - d)) != 0) as u64;
} else {
zlo = 1;
}
}

/* add */
let mut sign: i32 = nx.sign ^ ny.sign;
let samesign: bool = (sign ^ nz.sign) == 0;
let mut nonzero: i32 = 1;
if samesign {
/* r += z */
rlo = rlo.wrapping_add(zlo);
rhi += zhi + (rlo < zlo) as u64;
} else {
/* r -= z */
let (res, borrow) = rlo.overflowing_sub(zlo);
rlo = res;
rhi = rhi.wrapping_sub(zhi.wrapping_add(borrow as u64));
if (rhi >> 63) != 0 {
rlo = (rlo as i64).wrapping_neg() as u64;
rhi = (rhi as i64).wrapping_neg() as u64 - (rlo != 0) as u64;
sign = (sign == 0) as i32;
}
nonzero = (rhi != 0) as i32;
}

/* set rhi to top 63bit of the result (last bit is sticky) */
if nonzero != 0 {
e += 64;
d = rhi.leading_zeros() as i32 - 1;
/* note: d > 0 */
rhi = (rhi << d) | (rlo >> (64 - d)) | ((rlo << d) != 0) as u64;
} else if rlo != 0 {
d = rlo.leading_zeros() as i32 - 1;
if d < 0 {
rhi = (rlo >> 1) | (rlo & 1);
} else {
rhi = rlo << d;
}
} else {
/* exact +-0 */
return x * y + z;
}
e -= d;

/* convert to double */
let mut i: i64 = rhi as i64; /* i is in [1<<62,(1<<63)-1] */
if sign != 0 {
i = -i;
}
let mut r: f64 = i as f64; /* |r| is in [0x1p62,0x1p63] */

if e < -1022 - 62 {
/* result is subnormal before rounding */
if e == -1022 - 63 {
let mut c: f64 = x1p63;
if sign != 0 {
c = -c;
}
if r == c {
/* min normal after rounding, underflow depends
on arch behaviour which can be imitated by
a double to float conversion */
let fltmin: f32 = (x0_ffffff8p_63 * f32::MIN_POSITIVE as f64 * r) as f32;
return f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * fltmin as f64;
}
/* one bit is lost when scaled, add another top bit to
only round once at conversion if it is inexact */
if (rhi << 53) != 0 {
i = ((rhi >> 1) | (rhi & 1) | (1 << 62)) as i64;
if sign != 0 {
i = -i;
}
r = i as f64;
r = 2. * r - c; /* remove top bit */

/* raise underflow portably, such that it
cannot be optimized away */
{
let tiny: f64 = f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * r;
r += (tiny * tiny) * (r - r);
}
}
} else {
/* only round once when scaled */
d = 10;
i = (((rhi >> d) | ((rhi << (64 - d)) != 0) as u64) << d) as i64;
if sign != 0 {
i = -i;
}
r = i as f64;
}
}
scalbn(r, e)
return super::generic::fma(x, y, z);
}

#[cfg(test)]
Expand Down
Loading