Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 35 additions & 11 deletions references/classification/presets.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,16 @@ def __init__(
ra_magnitude=9,
augmix_severity=3,
random_erase_prob=0.0,
backend="pil",
):
trans = [transforms.RandomResizedCrop(crop_size, interpolation=interpolation)]
trans = []
backend = backend.lower()
if backend == "tensor":
trans.append(transforms.PILToTensor())
elif backend != "pil":
raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}")

trans.append(transforms.RandomResizedCrop(crop_size, interpolation=interpolation, antialias=True))
if hflip_prob > 0:
trans.append(transforms.RandomHorizontalFlip(hflip_prob))
if auto_augment_policy is not None:
Expand All @@ -30,9 +38,12 @@ def __init__(
else:
aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy)
trans.append(autoaugment.AutoAugment(policy=aa_policy, interpolation=interpolation))

if backend == "pil":
trans.append(transforms.PILToTensor())

trans.extend(
[
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=mean, std=std),
]
Expand All @@ -55,17 +66,30 @@ def __init__(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
interpolation=InterpolationMode.BILINEAR,
backend="pil",
):
trans = []

self.transforms = transforms.Compose(
[
transforms.Resize(resize_size, interpolation=interpolation),
transforms.CenterCrop(crop_size),
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=mean, std=std),
]
)
backend = backend.lower()
if backend == "tensor":
trans.append(transforms.PILToTensor())
else:
raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}")

trans += [
transforms.Resize(resize_size, interpolation=interpolation, antialias=True),
transforms.CenterCrop(crop_size),
]

if backend == "pil":
trans.append(transforms.PILToTensor())

trans += [
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=mean, std=std),
]

self.transforms = transforms.Compose(trans)

def __call__(self, img):
return self.transforms(img)
13 changes: 11 additions & 2 deletions references/classification/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import torch
import torch.utils.data
import torchvision
import torchvision.transforms
import transforms
import utils
from sampler import RASampler
Expand Down Expand Up @@ -143,6 +144,7 @@ def load_data(traindir, valdir, args):
random_erase_prob=random_erase_prob,
ra_magnitude=ra_magnitude,
augmix_severity=augmix_severity,
backend=args.backend,
),
)
if args.cache_dataset:
Expand All @@ -160,10 +162,16 @@ def load_data(traindir, valdir, args):
else:
if args.weights and args.test_only:
weights = torchvision.models.get_weight(args.weights)
preprocessing = weights.transforms()
preprocessing = weights.transforms(antialias=True)
if args.backend == "tensor":
preprocessing = torchvision.transforms.Compose([torchvision.transforms.PILToTensor(), preprocessing])

else:
preprocessing = presets.ClassificationPresetEval(
crop_size=val_crop_size, resize_size=val_resize_size, interpolation=interpolation
crop_size=val_crop_size,
resize_size=val_resize_size,
interpolation=interpolation,
backend=args.backend,
)

dataset_test = torchvision.datasets.ImageFolder(
Expand Down Expand Up @@ -507,6 +515,7 @@ def get_args_parser(add_help=True):
"--ra-reps", default=3, type=int, help="number of repetitions for Repeated Augmentation (default: 3)"
)
parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
parser.add_argument("--backend", default="PIL", type=str.lower, help="PIL or tensor - case insensitive")
return parser


Expand Down