Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 39 additions & 0 deletions test/test_prototype_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -1125,3 +1125,42 @@ def test_ctor(self, trfms):
inpt = torch.rand(1, 3, 32, 32)
output = c(inpt)
assert isinstance(output, torch.Tensor)


class TestScaleJitter:
def test__get_params(self, mocker):
image_size = (24, 32)
target_size = (16, 12)
scale_range = (0.5, 1.5)

transform = transforms.ScaleJitter(target_size=target_size, scale_range=scale_range)

sample = mocker.MagicMock(spec=features.Image, num_channels=3, image_size=image_size)
params = transform._get_params(sample)

assert "size" in params
size = params["size"]

assert isinstance(size, tuple) and len(size) == 2
height, width = size

assert int(target_size[0] * scale_range[0]) <= height <= int(target_size[0] * scale_range[1])
assert int(target_size[1] * scale_range[0]) <= width <= int(target_size[1] * scale_range[1])

def test__transform(self, mocker):
interpolation_sentinel = mocker.MagicMock()

transform = transforms.ScaleJitter(target_size=(16, 12), interpolation=interpolation_sentinel)
transform._transformed_types = (mocker.MagicMock,)

size_sentinel = mocker.MagicMock()
mocker.patch(
"torchvision.prototype.transforms._geometry.ScaleJitter._get_params", return_value=dict(size=size_sentinel)
)

inpt_sentinel = mocker.MagicMock()

mock = mocker.patch("torchvision.prototype.transforms._geometry.F.resize")
transform(inpt_sentinel)

mock.assert_called_once_with(inpt_sentinel, size=size_sentinel, interpolation=interpolation_sentinel)
1 change: 1 addition & 0 deletions torchvision/prototype/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
RandomVerticalFlip,
RandomZoomOut,
Resize,
ScaleJitter,
TenCrop,
)
from ._meta import ConvertBoundingBoxFormat, ConvertImageColorSpace, ConvertImageDtype
Expand Down
26 changes: 26 additions & 0 deletions torchvision/prototype/transforms/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -631,3 +631,29 @@ def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill=self.fill,
interpolation=self.interpolation,
)


class ScaleJitter(Transform):
def __init__(
self,
target_size: Tuple[int, int],
scale_range: Tuple[float, float] = (0.1, 2.0),
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
):
super().__init__()
self.target_size = target_size
self.scale_range = scale_range
self.interpolation = interpolation

def _get_params(self, sample: Any) -> Dict[str, Any]:
image = query_image(sample)
_, orig_height, orig_width = get_image_dimensions(image)

r = self.scale_range[0] + torch.rand(1) * (self.scale_range[1] - self.scale_range[0])
new_width = int(self.target_size[1] * r)
new_height = int(self.target_size[0] * r)

return dict(size=(new_height, new_width))

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return F.resize(inpt, size=params["size"], interpolation=self.interpolation)