Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 82 additions & 0 deletions test/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,8 @@
import shutil
import json
import random
import string
import io


try:
Expand Down Expand Up @@ -954,5 +956,85 @@ def _create_annotation_file(self, root, name, video_files):
fh.writelines(f"{file}\n" for file in sorted(video_files))


class LSUNTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.LSUN

REQUIRED_PACKAGES = ("lmdb",)
CONFIGS = datasets_utils.combinations_grid(
classes=("train", "test", "val", ["bedroom_train", "church_outdoor_train"])
)

_CATEGORIES = (
"bedroom",
"bridge",
"church_outdoor",
"classroom",
"conference_room",
"dining_room",
"kitchen",
"living_room",
"restaurant",
"tower",
)

def inject_fake_data(self, tmpdir, config):
root = pathlib.Path(tmpdir)

num_images = 0
for cls in self._parse_classes(config["classes"]):
num_images += self._create_lmdb(root, cls)

return num_images

@contextlib.contextmanager
def create_dataset(
self,
*args, **kwargs
):
with super().create_dataset(*args, **kwargs) as output:
yield output
# Currently datasets.LSUN caches the keys in the current directory rather than in the root directory. Thus,
# this creates a number of unique _cache_* files in the current directory that will not be removed together
# with the temporary directory
Comment on lines +996 to +998
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'll send a follow-up PR to fix this.

for file in os.listdir(os.getcwd()):
if file.startswith("_cache_"):
os.remove(file)

def _parse_classes(self, classes):
if not isinstance(classes, str):
return classes

split = classes
if split == "test":
return [split]

return [f"{category}_{split}" for category in self._CATEGORIES]

def _create_lmdb(self, root, cls):
lmdb = datasets_utils.lazy_importer.lmdb
hexdigits_lowercase = string.digits + string.ascii_lowercase[:6]

folder = f"{cls}_lmdb"

num_images = torch.randint(1, 4, size=()).item()
format = "webp"
files = datasets_utils.create_image_folder(root, folder, lambda idx: f"{idx}.{format}", num_images)

with lmdb.open(str(root / folder)) as env, env.begin(write=True) as txn:
for file in files:
key = "".join(random.choice(hexdigits_lowercase) for _ in range(40)).encode()

buffer = io.BytesIO()
Image.open(file).save(buffer, format)
buffer.seek(0)
value = buffer.read()

txn.put(key, value)

os.remove(file)

return num_images


if __name__ == "__main__":
unittest.main()