Skip to content

RuntimeError: No such operator image::read_file on Docker #4181

@moskomule

Description

@moskomule

🐛 Bug

In a Docker environment, torch.io.read_file causes RuntimeError: No such operator image::read_file.

To Reproduce

1. Setup a container

I used the following Docker file.

FROM nvidia/cuda:11.0-base-ubuntu20.04
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update -qq \
    && apt install -y -qq \
    apt-utils \
    bzip2 \
    build-essential \
    cmake \
    curl \
    git \
    libncurses5-dev \
    libncursesw5-dev \
    libboost-all-dev \
    locales \
    nasm \
    ruby \
    sudo \
    swig \
    unzip \
    wget \
    zsh \
    && apt-get clean \
    && rm -rf /var/lib/apt/lists/*

ENV CONDADIR ${HOME}/.miniconda
RUN cd ${HOME} \
    && wget -q https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh \
    && bash miniconda.sh -b -p ${CONDADIR} \
    && rm miniconda.sh
docker build -t test .
docker run --rm -it test
# in the launched container
export PATH=.miniconda/bin:$PATH
conda create -n test python=3.9 -y
source activate test
conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision cudatoolkit=11.1 numpy -y # another issue, but numpy is not automatically installed as a dependency

Run the following

import torchvision
torchvision.io.read_file(".")
# RuntimeError: No such operator image::read_file

Expected behavior

Environment

collect_env.py collects the following information (Docker v20.10.7).

Collecting environment information...
PyTorch version: 1.9.0
Is debug build: False
CUDA used to build PyTorch: 11.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.1 LTS (x86_64)
GCC version: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
Clang version: Could not collect
CMake version: version 3.16.3
Libc version: glibc-2.31

Python version: 3.9.5 (default, Jun  4 2021, 12:28:51)  [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-5.4.0-77-generic-x86_64-with-glibc2.31
Is CUDA available: False
CUDA runtime version: No CUDA
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A

Versions of relevant libraries:
[pip3] numpy==1.21.0
[pip3] torch==1.9.0
[pip3] torchvision==0.10.0
[conda] blas                      1.0                         mkl
[conda] cudatoolkit               11.1.74              h6bb024c_0    nvidia
[conda] ffmpeg                    4.3                  hf484d3e_0    pytorch
[conda] libblas                   3.9.0                     9_mkl    conda-forge
[conda] libcblas                  3.9.0                     9_mkl    conda-forge
[conda] liblapack                 3.9.0                     9_mkl    conda-forge
[conda] mkl                       2021.2.0           h06a4308_296
[conda] numpy                     1.21.0           py39hdbf815f_0    conda-forge
[conda] pytorch                   1.9.0           py3.9_cuda11.1_cudnn8.0.5_0    pytorch
[conda] torchvision               0.10.0               py39_cu111    pytorch

Additional context

I could not reproduce this issue in a non-Docker environment. A nightly build resolved this issue.

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions