@@ -24,65 +24,65 @@ Except otherwise noted, all models have been trained on 8x V100 GPUs.
2424```
2525torchrun --nproc_per_node=8 train.py\
2626 --dataset coco --model fasterrcnn_resnet50_fpn --epochs 26\
27- --lr-steps 16 22 --aspect-ratio-group-factor 3
27+ --lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone ResNet50_Weights.IMAGENET1K_V1
2828```
2929
3030### Faster R-CNN MobileNetV3-Large FPN
3131```
3232torchrun --nproc_per_node=8 train.py\
3333 --dataset coco --model fasterrcnn_mobilenet_v3_large_fpn --epochs 26\
34- --lr-steps 16 22 --aspect-ratio-group-factor 3
34+ --lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1
3535```
3636
3737### Faster R-CNN MobileNetV3-Large 320 FPN
3838```
3939torchrun --nproc_per_node=8 train.py\
4040 --dataset coco --model fasterrcnn_mobilenet_v3_large_320_fpn --epochs 26\
41- --lr-steps 16 22 --aspect-ratio-group-factor 3
41+ --lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1
4242```
4343
4444### FCOS ResNet-50 FPN
4545```
4646torchrun --nproc_per_node=8 train.py\
4747 --dataset coco --model fcos_resnet50_fpn --epochs 26\
48- --lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01 --amp
48+ --lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01 --amp --weights-backbone ResNet50_Weights.IMAGENET1K_V1
4949```
5050
5151### RetinaNet
5252```
5353torchrun --nproc_per_node=8 train.py\
5454 --dataset coco --model retinanet_resnet50_fpn --epochs 26\
55- --lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01
55+ --lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01 --weights-backbone ResNet50_Weights.IMAGENET1K_V1
5656```
5757
5858### SSD300 VGG16
5959```
6060torchrun --nproc_per_node=8 train.py\
6161 --dataset coco --model ssd300_vgg16 --epochs 120\
6262 --lr-steps 80 110 --aspect-ratio-group-factor 3 --lr 0.002 --batch-size 4\
63- --weight-decay 0.0005 --data-augmentation ssd
63+ --weight-decay 0.0005 --data-augmentation ssd --weights-backbone VGG16_Weights.IMAGENET1K_FEATURES
6464```
6565
6666### SSDlite320 MobileNetV3-Large
6767```
6868torchrun --nproc_per_node=8 train.py\
6969 --dataset coco --model ssdlite320_mobilenet_v3_large --epochs 660\
7070 --aspect-ratio-group-factor 3 --lr-scheduler cosineannealinglr --lr 0.15 --batch-size 24\
71- --weight-decay 0.00004 --data-augmentation ssdlite
71+ --weight-decay 0.00004 --data-augmentation ssdlite --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1
7272```
7373
7474
7575### Mask R-CNN
7676```
7777torchrun --nproc_per_node=8 train.py\
7878 --dataset coco --model maskrcnn_resnet50_fpn --epochs 26\
79- --lr-steps 16 22 --aspect-ratio-group-factor 3
79+ --lr-steps 16 22 --aspect-ratio-group-factor 3 --weights-backbone ResNet50_Weights.IMAGENET1K_V1
8080```
8181
8282
8383### Keypoint R-CNN
8484```
8585torchrun --nproc_per_node=8 train.py\
8686 --dataset coco_kp --model keypointrcnn_resnet50_fpn --epochs 46\
87- --lr-steps 36 43 --aspect-ratio-group-factor 3
87+ --lr-steps 36 43 --aspect-ratio-group-factor 3 --weights-backbone ResNet50_Weights.IMAGENET1K_V1
8888```
0 commit comments