@@ -98,58 +98,6 @@ You can construct a model with random weights by calling its constructor:
9898 convnext_large = models.convnext_large()
9999
100100 We provide pre-trained models, using the PyTorch :mod: `torch.utils.model_zoo `.
101- These can be constructed by passing ``pretrained=True ``:
102-
103- .. code :: python
104-
105- import torchvision.models as models
106- resnet18 = models.resnet18(pretrained = True )
107- alexnet = models.alexnet(pretrained = True )
108- squeezenet = models.squeezenet1_0(pretrained = True )
109- vgg16 = models.vgg16(pretrained = True )
110- densenet = models.densenet161(pretrained = True )
111- inception = models.inception_v3(pretrained = True )
112- googlenet = models.googlenet(pretrained = True )
113- shufflenet = models.shufflenet_v2_x1_0(pretrained = True )
114- mobilenet_v2 = models.mobilenet_v2(pretrained = True )
115- mobilenet_v3_large = models.mobilenet_v3_large(pretrained = True )
116- mobilenet_v3_small = models.mobilenet_v3_small(pretrained = True )
117- resnext50_32x4d = models.resnext50_32x4d(pretrained = True )
118- wide_resnet50_2 = models.wide_resnet50_2(pretrained = True )
119- mnasnet = models.mnasnet1_0(pretrained = True )
120- efficientnet_b0 = models.efficientnet_b0(pretrained = True )
121- efficientnet_b1 = models.efficientnet_b1(pretrained = True )
122- efficientnet_b2 = models.efficientnet_b2(pretrained = True )
123- efficientnet_b3 = models.efficientnet_b3(pretrained = True )
124- efficientnet_b4 = models.efficientnet_b4(pretrained = True )
125- efficientnet_b5 = models.efficientnet_b5(pretrained = True )
126- efficientnet_b6 = models.efficientnet_b6(pretrained = True )
127- efficientnet_b7 = models.efficientnet_b7(pretrained = True )
128- efficientnet_v2_s = models.efficientnet_v2_s(pretrained = True )
129- efficientnet_v2_m = models.efficientnet_v2_m(pretrained = True )
130- efficientnet_v2_l = models.efficientnet_v2_l(pretrained = True )
131- regnet_y_400mf = models.regnet_y_400mf(pretrained = True )
132- regnet_y_800mf = models.regnet_y_800mf(pretrained = True )
133- regnet_y_1_6gf = models.regnet_y_1_6gf(pretrained = True )
134- regnet_y_3_2gf = models.regnet_y_3_2gf(pretrained = True )
135- regnet_y_8gf = models.regnet_y_8gf(pretrained = True )
136- regnet_y_16gf = models.regnet_y_16gf(pretrained = True )
137- regnet_y_32gf = models.regnet_y_32gf(pretrained = True )
138- regnet_x_400mf = models.regnet_x_400mf(pretrained = True )
139- regnet_x_800mf = models.regnet_x_800mf(pretrained = True )
140- regnet_x_1_6gf = models.regnet_x_1_6gf(pretrained = True )
141- regnet_x_3_2gf = models.regnet_x_3_2gf(pretrained = True )
142- regnet_x_8gf = models.regnet_x_8gf(pretrained = True )
143- regnet_x_16gf = models.regnet_x_16gf(pretrainedTrue)
144- regnet_x_32gf = models.regnet_x_32gf(pretrained = True )
145- vit_b_16 = models.vit_b_16(pretrained = True )
146- vit_b_32 = models.vit_b_32(pretrained = True )
147- vit_l_16 = models.vit_l_16(pretrained = True )
148- vit_l_32 = models.vit_l_32(pretrained = True )
149- convnext_tiny = models.convnext_tiny(pretrained = True )
150- convnext_small = models.convnext_small(pretrained = True )
151- convnext_base = models.convnext_base(pretrained = True )
152- convnext_large = models.convnext_large(pretrained = True )
153101
154102Instancing a pre-trained model will download its weights to a cache directory.
155103This directory can be set using the `TORCH_HOME ` environment variable. See
@@ -525,7 +473,7 @@ Obtaining a pre-trained quantized model can be done with a few lines of code:
525473.. code :: python
526474
527475 import torchvision.models as models
528- model = models.quantization.mobilenet_v2(pretrained = True , quantize = True )
476+ model = models.quantization.mobilenet_v2(weights = MobileNet_V2_QuantizedWeights. IMAGENET1K_QNNPACK_V1 , quantize = True )
529477 model.eval()
530478 # run the model with quantized inputs and weights
531479 out = model(torch.rand(1 , 3 , 224 , 224 ))
0 commit comments