Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 17 additions & 10 deletions benchmark/benchmark_bert_tokenizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,29 +14,36 @@ def benchmark_bert_tokenizer(args):
tt_tokenizer = tt_bert_tokenizer(VOCAB_FILE, return_tokens=True)
hf_tokenizer_slow = hf_bert_tokenizer_slow.from_pretrained("bert-base-uncased")
hf_tokenizer_fast = hf_tokenizer_lib.from_pretrained("bert-base-uncased")
dp = EnWik9().header(args.num_samples)
dp = EnWik9().header(args.num_samples).batch(args.batch_size)
samples = list(dp)

with Timer("Running TorchText BERT Tokenizer on non-batched input"):
for s in samples:
tt_tokenizer(s)
for batch in samples:
for s in batch:
tt_tokenizer(s)

with Timer("Running HF BERT Tokenizer (slow) on non-batched input"):
for s in samples:
hf_tokenizer_slow.tokenize(s)
for batch in samples:
for s in batch:
hf_tokenizer_slow.tokenize(s)

with Timer("Running HF BERT Tokenizer (fast) on non-batched input"):
for s in samples:
hf_tokenizer_fast.encode(s)
for batch in samples:
for s in batch:
hf_tokenizer_fast.encode(s)

with Timer("Running TorchText BERT Tokenizer on batched input"):
tt_tokenizer(samples)
for batch in samples:
tt_tokenizer(batch)

with Timer("Running HF BERT Tokenizer (fast) on batched input"):
hf_tokenizer_fast.encode_batch(samples)
for batch in samples:
hf_tokenizer_fast.encode_batch(batch)


if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--num-samples", default=1000, type=int)
parser.add_argument("--num-samples", default=10000, type=int)
parser.add_argument("--batch-size", default=100, type=int)

benchmark_bert_tokenizer(parser.parse_args())