Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 76 additions & 0 deletions test/datasets/test_agnews.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
import os
import random
import string
from collections import defaultdict
from unittest.mock import patch

from parameterized import parameterized
from torchtext.datasets.ag_news import AG_NEWS

from ..common.case_utils import TempDirMixin, zip_equal
from ..common.torchtext_test_case import TorchtextTestCase


def _get_mock_dataset(root_dir):
"""
root_dir: directory to the mocked dataset
"""
temp_dataset_dir = os.path.join(root_dir, "AG_NEWS")
os.makedirs(temp_dataset_dir, exist_ok=True)

seed = 1
mocked_data = defaultdict(list)
for file_name in ("train.csv", "test.csv"):
txt_file = os.path.join(temp_dataset_dir, file_name)
with open(txt_file, "w") as f:
for i in range(5):
label = seed % 4 + 1
rand_string = " ".join(
random.choice(string.ascii_letters) for i in range(seed)
)
dataset_line = (label, f"{rand_string} {rand_string}")
# append line to correct dataset split
mocked_data[os.path.splitext(file_name)[0]].append(dataset_line)
f.write(f'"{label}","{rand_string}","{rand_string}"\n')
seed += 1

return mocked_data


class TestAGNews(TempDirMixin, TorchtextTestCase):
root_dir = None
samples = []
patcher = None

@classmethod
def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.samples = _get_mock_dataset(cls.root_dir)
cls.patcher = patch(
"torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True
)
cls.patcher.start()

@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()

@parameterized.expand(["train", "test"])
def test_agnews(self, split):
dataset = AG_NEWS(root=self.root_dir, split=split)

samples = list(dataset)
expected_samples = self.samples[split]
for sample, expected_sample in zip_equal(samples, expected_samples):
print(sample, expected_sample)
self.assertEqual(sample, expected_sample)

@parameterized.expand(["train", "test"])
def test_agnews_split_argument(self, split):
dataset1 = AG_NEWS(root=self.root_dir, split=split)
(dataset2,) = AG_NEWS(root=self.root_dir, split=(split,))

for d1, d2 in zip_equal(dataset1, dataset2):
self.assertEqual(d1, d2)