Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 22 additions & 21 deletions test/datasets/test_amazonreviewpolarity.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from parameterized import parameterized
from torchtext.datasets.amazonreviewpolarity import AmazonReviewPolarity

from ..common.case_utils import TempDirMixin
from ..common.case_utils import TempDirMixin, zip_equal
from ..common.torchtext_test_case import TorchtextTestCase


Expand Down Expand Up @@ -55,28 +55,29 @@ def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.samples = _get_mock_dataset(cls.root_dir)
cls.patcher = patch(
"torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True
)
cls.patcher.start()

@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()

@parameterized.expand(["train", "test"])
def test_amazon_review_polarity(self, split):
with patch(
"torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True
):
dataset = AmazonReviewPolarity(root=self.root_dir, split=split)
n_iter = 0
for i, (label, text) in enumerate(dataset):
expected_sample = self.samples[split][i]
assert label == expected_sample[0]
assert text == expected_sample[1]
n_iter += 1
assert n_iter == len(self.samples[split])
dataset = AmazonReviewPolarity(root=self.root_dir, split=split)

@parameterized.expand([("train", ("train",)), ("test", ("test",))])
def test_amazon_review_polarity_split_argument(self, split1, split2):
with patch(
"torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True
):
dataset1 = AmazonReviewPolarity(root=self.root_dir, split=split1)
(dataset2,) = AmazonReviewPolarity(root=self.root_dir, split=split2)
samples = list(dataset)
expected_samples = self.samples[split]
for sample, expected_sample in zip_equal(samples, expected_samples):
self.assertEqual(sample, expected_sample)

@parameterized.expand(["train", "test"])
def test_amazon_review_polarity_split_argument(self, split):
dataset1 = AmazonReviewPolarity(root=self.root_dir, split=split)
(dataset2,) = AmazonReviewPolarity(root=self.root_dir, split=(split,))

for d1, d2 in zip(dataset1, dataset2):
self.assertEqual(d1, d2)
for d1, d2 in zip_equal(dataset1, dataset2):
self.assertEqual(d1, d2)