Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 30 additions & 16 deletions torchtext/datasets/wikitext103.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,15 @@
import logging
from torchtext.utils import (
download_from_url,
extract_archive,
)
from torchtext._internal.module_utils import is_module_available

if is_module_available("torchdata"):
from torchdata.datapipes.iter import FileOpener, HttpReader, IterableWrapper

import os
from torchtext.data.datasets_utils import (
_RawTextIterableDataset,
_wrap_split_argument,
_add_docstring_header,
_find_match,
_create_dataset_directory,
_read_text_iterator,
)
from typing import Union, Tuple

URL = 'https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip'

Expand All @@ -24,15 +23,30 @@

DATASET_NAME = "WikiText103"

_EXTRACTED_FILES = {
'train': os.path.join('wikitext-103', 'wiki.train.tokens'),
'test': os.path.join('wikitext-103', 'wiki.test.tokens'),
'valid': os.path.join('wikitext-103', 'wiki.valid.tokens'),
}


@_add_docstring_header(num_lines=NUM_LINES)
@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(('train', 'valid', 'test'))
def WikiText103(root, split):
dataset_tar = download_from_url(URL, root=root, hash_value=MD5, hash_type='md5')
extracted_files = extract_archive(dataset_tar)

path = _find_match(split, extracted_files)
logging.info('Creating {} data'.format(split))
return _RawTextIterableDataset(DATASET_NAME,
NUM_LINES[split], _read_text_iterator(path))
def WikiText103(root: str, split: Union[Tuple[str], str]):
if not is_module_available("torchdata"):
raise ModuleNotFoundError("Package `torchdata` not found. Please install following instructions at `https://github.com/pytorch/data`")
url_dp = IterableWrapper([URL])
# cache data on-disk
cache_compressed_dp = url_dp.on_disk_cache(
filepath_fn=lambda x: os.path.join(root, os.path.basename(x)),
hash_dict={os.path.join(root, os.path.basename(URL)): MD5},
hash_type="md5",
)
cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(mode="wb", same_filepath_fn=True)
cache_decompressed_dp = cache_compressed_dp.on_disk_cache(filepath_fn=lambda x: os.path.join(root, _EXTRACTED_FILES[split]))
# Extract zip and filter the appropriate split file
cache_decompressed_dp = FileOpener(cache_decompressed_dp, mode="b").read_from_zip().filter(lambda x: _EXTRACTED_FILES[split] in x[0])
cache_decompressed_dp = cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True)
data_dp = FileOpener(cache_decompressed_dp, mode='b')
return data_dp.readlines(strip_newline=False, decode=True, return_path=False)