Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 98 additions & 0 deletions core/conversion/converters/impl/shuffle.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,104 @@ static auto shuffle_registrations TORCHTRT_UNUSED =
return true;
}})
.pattern(
{"aten::unflatten.int(Tensor self, int dim, int[] sizes) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
auto in = args[0].ITensorOrFreeze(ctx);
auto dim = args[1].unwrapToInt();
auto in_shape = util::toVec(in->getDimensions());
std::vector<int64_t> new_shape;
nvinfer1::ITensor* shape_tensor;
if (ctx->input_is_dynamic) {
/*
* In case the dim is negative
* If the dim in negative range is larger than in_shape,
* then it should run into index out of bound error as expected
*/
if (dim < 0) {
dim = in_shape.size() + dim;
}
std::cout << "Dynamic shape case" << std::endl;
LOG_DEBUG("Using dynamic version of reshape layer");
if (args[2].isITensorList()) {
std::cout << "isTensorList case" << std::endl;
LOG_DEBUG("Shape tensor is an ITensorList");
auto expand_shape = args[2].unwrapToITensorList();
auto shape_layer = ctx->net->addShape(*in);
TORCHTRT_CHECK(shape_layer, "Unable to create shape layer from node: " << *n);
auto shape_1d_tensor = shape_layer->getOutput(0);

std::vector<int> before_dim_indices_vector(dim);
std::iota(before_dim_indices_vector.begin(), before_dim_indices_vector.end(), 0);

nvinfer1::ITensor* before_dim_gather_out = nullptr;
if (before_dim_indices_vector.size()) {
at::Tensor before_dim_indices = torch::tensor(before_dim_indices_vector).to(torch::kI32);
auto before_dim_indices_out = converters::tensor_to_const(ctx, before_dim_indices);
auto before_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *before_dim_indices_out, 0);
TORCHTRT_CHECK(before_dim_gather_layer, "Unable to create gather layer from node: " << *n);
before_dim_gather_out = before_dim_gather_layer->getOutput(0);
}

std::vector<int> after_dim_indices_vector(in_shape.size() - (dim + 1));
std::iota(after_dim_indices_vector.begin(), after_dim_indices_vector.end(), dim + 1);

nvinfer1::ITensor* after_dim_gather_out = nullptr;
if (after_dim_indices_vector.size()) {
at::Tensor after_dim_indices = torch::tensor(after_dim_indices_vector).to(torch::kI32);
auto after_dim_indices_out = converters::tensor_to_const(ctx, after_dim_indices);
auto after_dim_gather_layer = ctx->net->addGather(*shape_1d_tensor, *after_dim_indices_out, 0);
TORCHTRT_CHECK(after_dim_gather_layer, "Unable to create gather layer from node: " << *n);
after_dim_gather_out = after_dim_gather_layer->getOutput(0);
}

std::vector<nvinfer1::ITensor*> shape_tensors;
if (before_dim_gather_out) {
shape_tensors.push_back(before_dim_gather_out);
}
for (auto new_shape_tensor : expand_shape) {
shape_tensors.push_back(new_shape_tensor);
}
if (after_dim_gather_out) {
shape_tensors.push_back(after_dim_gather_out);
}

auto shape_cat_layer = ctx->net->addConcatenation(shape_tensors.data(), shape_tensors.size());
TORCHTRT_CHECK(shape_cat_layer, "Unable to create cat layer from node: " << *n);
shape_tensor = shape_cat_layer->getOutput(0);
LOG_DEBUG("Shape tensor shape: " << shape_tensor->getDimensions());
} else if (args[2].isIntList()) {
auto shape_vec = args[2].unwrapToIntList().vec();
// New shape
new_shape.insert(new_shape.end(), in_shape.begin(), in_shape.begin() + dim);
new_shape.insert(new_shape.end(), shape_vec.begin(), shape_vec.end());
new_shape.insert(new_shape.end(), in_shape.begin() + dim + 1, in_shape.end());

shape_tensor = tensor_to_const(ctx, torch::tensor(new_shape).to(torch::kI32));
} else {
LOG_ERROR(
"Invalid IValue type of " << args[2].IValue()->type()
<< " detected for shape tensor from node: " << *n);
}
} else {
new_shape =
torch::unflatten(torch::rand(in_shape), dim, args[2].unwrapToIntList().vec()).sizes().vec();
}
auto shuffle = ctx->net->addShuffle(*in);
shuffle->setName(util::node_info(n).c_str());
TORCHTRT_CHECK(shuffle, "Unable to create shuffle layer from node: " << *n);

if (ctx->input_is_dynamic) {
shuffle->setInput(1, *shape_tensor);
} else {
shuffle->setReshapeDimensions(util::toDims(new_shape));
}

auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle->getOutput(0));
LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());

return true;
}})
.pattern(
{"aten::reshape(Tensor self, int[] shape) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
auto in = args[0].ITensorOrFreeze(ctx);
Expand Down
52 changes: 52 additions & 0 deletions tests/core/conversion/converters/test_shuffle.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -364,3 +364,55 @@ TEST(Converters, ATenPixelShuffle5DConvertsCorrectly) {

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenConvertsCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : int = prim::Constant[value=512]()
%4 : int = prim::Constant[value=1]()
%5 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%3, %4, %5)
%7 : Tensor = aten::unflatten(%x.1, %2, %6)
return (%7))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 5, {1, 512}, {at::kCUDA});
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});

auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in});

in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenNegativeDimConvertsCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%2 : int = prim::Constant[value=-1]()
%3 : int = prim::Constant[value=512]()
%4 : int = prim::Constant[value=1]()
%5 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%3, %4, %5)
%7 : Tensor = aten::unflatten(%x.1, %2, %6)
return (%7))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 5, {1, 512}, {at::kCUDA});
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});

auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in});

in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}
135 changes: 134 additions & 1 deletion tests/cpp/test_dynamic_size.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -124,4 +124,137 @@ TEST(Converters, ATenResizeGetItemDynShapeMulCorrectly) {
auto trt = trt_results[0].reshape(jit_results[0].sizes());

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}
}

TEST(Converters, ATenUnflattenDynShapeShapeCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : int = prim::Constant[value=512]()
%4 : int = prim::Constant[value=1]()
%5 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%3, %4, %5)
%7 : Tensor = aten::unflatten(%x.1, %2, %6)
return (%7))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 10, {1, 512}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenDynShapeNegativeDimsShapeCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%2 : int = prim::Constant[value=-2]()
%3 : int = prim::Constant[value=512]()
%4 : int = prim::Constant[value=1]()
%5 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%3, %4, %5)
%7 : Tensor = aten::unflatten(%x.1, %2, %6)
return (%7))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 10, {1, 512, 2}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you move these to test_shuffle.cpp since these are not ITensor based (aten::size + dyn_shapes) ? The aten::size + aten::unflatten.cpp tests can be left in this file.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Removed redundant test cases. Mentioned test case variants are already present in test_shuffle.


TEST(Converters, ATenUnflattenDynShapeITensorShapeCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : int = aten::size(%x.1, %2)
%4 : int = prim::Constant[value=256]()
%5 : int = prim::Constant[value=2]()
%6 : int[] = prim::ListConstruct(%4, %5)
%7 : Tensor = aten::unflatten(%x.1, %2, %6)
return (%7))IR";
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 10, {1, 512, 1}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenDynShapeITensorShapeCorrectlyFirstDim) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%1 : int = prim::Constant[value=0]()
%2 : int = prim::Constant[value=1]()
%3 : int = aten::size(%x.1, %1)
%6 : int[] = prim::ListConstruct(%2, %2, %3, %2, %2)
%7 : Tensor = aten::unflatten(%x.1, %1, %6)
return (%7))IR";
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 10, {64, 512, 1}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenUnflattenDynShapeITensorShapeCorrectlyLastDim) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%1 : int = prim::Constant[value=2]()
%2 : int = prim::Constant[value=1]()
%3 : int = aten::size(%x.1, %1)
%5 : int = prim::Constant[value=2]()
%6 : int[] = prim::ListConstruct(%3, %2, %2)
%7 : Tensor = aten::unflatten(%x.1, %5, %6)
return (%7))IR";
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(0, 10, {1, 512, 9}, {at::kCUDA});

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngineDynamic(g, params, {in}, true);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}