-
Notifications
You must be signed in to change notification settings - Fork 686
Add NEON implementation of FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf #5115
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
✅ Deploy Preview for pytorch-fbgemm-docs ready!
To edit notification comments on pull requests, go to your Netlify project configuration. |
Contributor
5c7487a to
065dc29
Compare
Nicoshev
added a commit
to Nicoshev/FBGEMM
that referenced
this pull request
Nov 13, 2025
…lf (pytorch#5115) Summary: X-link: facebookresearch/FBGEMM#2121 Adding NEON translation of FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf, used by Ads Performance improves by an order of magnitude: Before: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 211.26, 0.85 2, 100, 64, 210.96, 0.84 2, 100, 128, 204.26, 0.82 2, 100, 256, 200.47, 0.80 2, 100, 512, 194.19, 0.78 2, 100, 1024, 190.98, 0.76 2, 100, 2048, 186.85, 0.75 2, 120, 16, 206.88, 0.83 2, 120, 64, 211.64, 0.85 2, 120, 128, 203.97, 0.82 2, 120, 256, 200.22, 0.80 2, 120, 512, 194.97, 0.78 2, 120, 1024, 191.76, 0.77 2, 120, 2048, 187.45, 0.75 2, 1000, 16, 205.10, 0.82 2, 1000, 64, 214.15, 0.86 2, 1000, 128, 205.43, 0.82 2, 1000, 256, 200.34, 0.80 2, 1000, 512, 196.62, 0.79 2, 1000, 1024, 194.64, 0.78 2, 1000, 2048, 187.54, 0.75 4, 100, 16, 197.97, 0.79 4, 100, 64, 200.02, 0.80 4, 100, 128, 191.06, 0.76 4, 100, 256, 186.58, 0.75 4, 100, 512, 180.76, 0.72 4, 100, 1024, 176.65, 0.71 4, 100, 2048, 175.00, 0.70 4, 120, 16, 198.93, 0.80 4, 120, 64, 201.74, 0.81 4, 120, 128, 190.95, 0.76 4, 120, 256, 186.79, 0.75 4, 120, 512, 181.32, 0.73 4, 120, 1024, 177.54, 0.71 4, 120, 2048, 174.69, 0.70 4, 1000, 16, 194.63, 0.78 4, 1000, 64, 201.64, 0.81 4, 1000, 128, 191.78, 0.77 4, 1000, 256, 186.87, 0.75 4, 1000, 512, 182.91, 0.73 4, 1000, 1024, 180.66, 0.72 4, 1000, 2048, 175.04, 0.70 8, 100, 16, 171.01, 0.68 8, 100, 64, 177.53, 0.71 8, 100, 128, 168.92, 0.68 8, 100, 256, 165.23, 0.66 8, 100, 512, 162.25, 0.65 8, 100, 1024, 158.87, 0.64 8, 100, 2048, 155.39, 0.62 8, 120, 16, 173.77, 0.70 8, 120, 64, 178.34, 0.71 8, 120, 128, 168.66, 0.67 8, 120, 256, 165.60, 0.66 8, 120, 512, 162.30, 0.65 8, 120, 1024, 159.38, 0.64 8, 120, 2048, 156.17, 0.62 8, 1000, 16, 171.34, 0.69 8, 1000, 64, 178.96, 0.72 8, 1000, 128, 169.71, 0.68 8, 1000, 256, 165.62, 0.66 8, 1000, 512, 162.98, 0.65 8, 1000, 1024, 161.59, 0.65 8, 1000, 2048, 157.16, 0.63 After: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 1006.83, 4.03 2, 100, 64, 1542.11, 6.17 2, 100, 128, 1882.99, 7.53 2, 100, 256, 2063.71, 8.25 2, 100, 512, 2232.29, 8.93 2, 100, 1024, 2298.69, 9.19 2, 100, 2048, 2333.73, 9.33 2, 120, 16, 1016.40, 4.07 2, 120, 64, 1524.36, 6.10 2, 120, 128, 1853.40, 7.41 2, 120, 256, 2158.92, 8.64 2, 120, 512, 2321.61, 9.29 2, 120, 1024, 2353.80, 9.42 2, 120, 2048, 2332.84, 9.33 2, 1000, 16, 1129.08, 4.52 2, 1000, 64, 1606.46, 6.43 2, 1000, 128, 2095.33, 8.38 2, 1000, 256, 2470.88, 9.88 2, 1000, 512, 2746.67, 10.99 2, 1000, 1024, 2882.32, 11.53 2, 1000, 2048, 2447.96, 9.79 4, 100, 16, 999.05, 4.00 4, 100, 64, 1666.00, 6.66 4, 100, 128, 2062.08, 8.25 4, 100, 256, 2226.33, 8.91 4, 100, 512, 2481.11, 9.92 4, 100, 1024, 2717.50, 10.87 4, 100, 2048, 2656.00, 10.62 4, 120, 16, 1056.31, 4.23 4, 120, 64, 1651.95, 6.61 4, 120, 128, 2058.65, 8.23 4, 120, 256, 2339.64, 9.36 4, 120, 512, 2570.03, 10.28 4, 120, 1024, 2788.24, 11.15 4, 120, 2048, 2701.20, 10.80 4, 1000, 16, 1184.28, 4.74 4, 1000, 64, 1765.47, 7.06 4, 1000, 128, 2348.17, 9.39 4, 1000, 256, 2852.72, 11.41 4, 1000, 512, 3249.46, 13.00 4, 1000, 1024, 3418.46, 13.67 4, 1000, 2048, 2841.77, 11.37 8, 100, 16, 1176.35, 4.71 8, 100, 64, 1902.76, 7.61 8, 100, 128, 2196.23, 8.78 8, 100, 256, 2596.55, 10.39 8, 100, 512, 2814.30, 11.26 8, 100, 1024, 3175.49, 12.70 8, 100, 2048, 3334.41, 13.34 8, 120, 16, 1213.55, 4.85 8, 120, 64, 1806.19, 7.22 8, 120, 128, 2390.64, 9.56 8, 120, 256, 2736.11, 10.94 8, 120, 512, 3015.86, 12.06 8, 120, 1024, 3332.53, 13.33 8, 120, 2048, 3319.50, 13.28 8, 1000, 16, 1362.12, 5.45 8, 1000, 64, 2029.25, 8.12 8, 1000, 128, 2759.50, 11.04 8, 1000, 256, 3532.71, 14.13 8, 1000, 512, 4014.48, 16.06 8, 1000, 1024, 4240.49, 16.96 8, 1000, 2048, 3440.59, 13.76 Differential Revision: D86774172
Nicoshev
added a commit
to Nicoshev/FBGEMM
that referenced
this pull request
Nov 13, 2025
…lf (pytorch#5115) Summary: X-link: facebookresearch/FBGEMM#2121 Adding NEON translation of FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf, used by Ads Performance improves by an order of magnitude: Before: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 211.26, 0.85 2, 100, 64, 210.96, 0.84 2, 100, 128, 204.26, 0.82 2, 100, 256, 200.47, 0.80 2, 100, 512, 194.19, 0.78 2, 100, 1024, 190.98, 0.76 2, 100, 2048, 186.85, 0.75 2, 120, 16, 206.88, 0.83 2, 120, 64, 211.64, 0.85 2, 120, 128, 203.97, 0.82 2, 120, 256, 200.22, 0.80 2, 120, 512, 194.97, 0.78 2, 120, 1024, 191.76, 0.77 2, 120, 2048, 187.45, 0.75 2, 1000, 16, 205.10, 0.82 2, 1000, 64, 214.15, 0.86 2, 1000, 128, 205.43, 0.82 2, 1000, 256, 200.34, 0.80 2, 1000, 512, 196.62, 0.79 2, 1000, 1024, 194.64, 0.78 2, 1000, 2048, 187.54, 0.75 4, 100, 16, 197.97, 0.79 4, 100, 64, 200.02, 0.80 4, 100, 128, 191.06, 0.76 4, 100, 256, 186.58, 0.75 4, 100, 512, 180.76, 0.72 4, 100, 1024, 176.65, 0.71 4, 100, 2048, 175.00, 0.70 4, 120, 16, 198.93, 0.80 4, 120, 64, 201.74, 0.81 4, 120, 128, 190.95, 0.76 4, 120, 256, 186.79, 0.75 4, 120, 512, 181.32, 0.73 4, 120, 1024, 177.54, 0.71 4, 120, 2048, 174.69, 0.70 4, 1000, 16, 194.63, 0.78 4, 1000, 64, 201.64, 0.81 4, 1000, 128, 191.78, 0.77 4, 1000, 256, 186.87, 0.75 4, 1000, 512, 182.91, 0.73 4, 1000, 1024, 180.66, 0.72 4, 1000, 2048, 175.04, 0.70 8, 100, 16, 171.01, 0.68 8, 100, 64, 177.53, 0.71 8, 100, 128, 168.92, 0.68 8, 100, 256, 165.23, 0.66 8, 100, 512, 162.25, 0.65 8, 100, 1024, 158.87, 0.64 8, 100, 2048, 155.39, 0.62 8, 120, 16, 173.77, 0.70 8, 120, 64, 178.34, 0.71 8, 120, 128, 168.66, 0.67 8, 120, 256, 165.60, 0.66 8, 120, 512, 162.30, 0.65 8, 120, 1024, 159.38, 0.64 8, 120, 2048, 156.17, 0.62 8, 1000, 16, 171.34, 0.69 8, 1000, 64, 178.96, 0.72 8, 1000, 128, 169.71, 0.68 8, 1000, 256, 165.62, 0.66 8, 1000, 512, 162.98, 0.65 8, 1000, 1024, 161.59, 0.65 8, 1000, 2048, 157.16, 0.63 After: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 1006.83, 4.03 2, 100, 64, 1542.11, 6.17 2, 100, 128, 1882.99, 7.53 2, 100, 256, 2063.71, 8.25 2, 100, 512, 2232.29, 8.93 2, 100, 1024, 2298.69, 9.19 2, 100, 2048, 2333.73, 9.33 2, 120, 16, 1016.40, 4.07 2, 120, 64, 1524.36, 6.10 2, 120, 128, 1853.40, 7.41 2, 120, 256, 2158.92, 8.64 2, 120, 512, 2321.61, 9.29 2, 120, 1024, 2353.80, 9.42 2, 120, 2048, 2332.84, 9.33 2, 1000, 16, 1129.08, 4.52 2, 1000, 64, 1606.46, 6.43 2, 1000, 128, 2095.33, 8.38 2, 1000, 256, 2470.88, 9.88 2, 1000, 512, 2746.67, 10.99 2, 1000, 1024, 2882.32, 11.53 2, 1000, 2048, 2447.96, 9.79 4, 100, 16, 999.05, 4.00 4, 100, 64, 1666.00, 6.66 4, 100, 128, 2062.08, 8.25 4, 100, 256, 2226.33, 8.91 4, 100, 512, 2481.11, 9.92 4, 100, 1024, 2717.50, 10.87 4, 100, 2048, 2656.00, 10.62 4, 120, 16, 1056.31, 4.23 4, 120, 64, 1651.95, 6.61 4, 120, 128, 2058.65, 8.23 4, 120, 256, 2339.64, 9.36 4, 120, 512, 2570.03, 10.28 4, 120, 1024, 2788.24, 11.15 4, 120, 2048, 2701.20, 10.80 4, 1000, 16, 1184.28, 4.74 4, 1000, 64, 1765.47, 7.06 4, 1000, 128, 2348.17, 9.39 4, 1000, 256, 2852.72, 11.41 4, 1000, 512, 3249.46, 13.00 4, 1000, 1024, 3418.46, 13.67 4, 1000, 2048, 2841.77, 11.37 8, 100, 16, 1176.35, 4.71 8, 100, 64, 1902.76, 7.61 8, 100, 128, 2196.23, 8.78 8, 100, 256, 2596.55, 10.39 8, 100, 512, 2814.30, 11.26 8, 100, 1024, 3175.49, 12.70 8, 100, 2048, 3334.41, 13.34 8, 120, 16, 1213.55, 4.85 8, 120, 64, 1806.19, 7.22 8, 120, 128, 2390.64, 9.56 8, 120, 256, 2736.11, 10.94 8, 120, 512, 3015.86, 12.06 8, 120, 1024, 3332.53, 13.33 8, 120, 2048, 3319.50, 13.28 8, 1000, 16, 1362.12, 5.45 8, 1000, 64, 2029.25, 8.12 8, 1000, 128, 2759.50, 11.04 8, 1000, 256, 3532.71, 14.13 8, 1000, 512, 4014.48, 16.06 8, 1000, 1024, 4240.49, 16.96 8, 1000, 2048, 3440.59, 13.76 Differential Revision: D86774172
065dc29 to
a7a88a4
Compare
Nicoshev
added a commit
to Nicoshev/FBGEMM
that referenced
this pull request
Nov 14, 2025
…lf (pytorch#5115) Summary: X-link: facebookresearch/FBGEMM#2121 Adding NEON translation of FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf, used by Ads Performance improves by an order of magnitude: Before: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 211.26, 0.85 2, 100, 64, 210.96, 0.84 2, 100, 128, 204.26, 0.82 2, 100, 256, 200.47, 0.80 2, 100, 512, 194.19, 0.78 2, 100, 1024, 190.98, 0.76 2, 100, 2048, 186.85, 0.75 2, 120, 16, 206.88, 0.83 2, 120, 64, 211.64, 0.85 2, 120, 128, 203.97, 0.82 2, 120, 256, 200.22, 0.80 2, 120, 512, 194.97, 0.78 2, 120, 1024, 191.76, 0.77 2, 120, 2048, 187.45, 0.75 2, 1000, 16, 205.10, 0.82 2, 1000, 64, 214.15, 0.86 2, 1000, 128, 205.43, 0.82 2, 1000, 256, 200.34, 0.80 2, 1000, 512, 196.62, 0.79 2, 1000, 1024, 194.64, 0.78 2, 1000, 2048, 187.54, 0.75 4, 100, 16, 197.97, 0.79 4, 100, 64, 200.02, 0.80 4, 100, 128, 191.06, 0.76 4, 100, 256, 186.58, 0.75 4, 100, 512, 180.76, 0.72 4, 100, 1024, 176.65, 0.71 4, 100, 2048, 175.00, 0.70 4, 120, 16, 198.93, 0.80 4, 120, 64, 201.74, 0.81 4, 120, 128, 190.95, 0.76 4, 120, 256, 186.79, 0.75 4, 120, 512, 181.32, 0.73 4, 120, 1024, 177.54, 0.71 4, 120, 2048, 174.69, 0.70 4, 1000, 16, 194.63, 0.78 4, 1000, 64, 201.64, 0.81 4, 1000, 128, 191.78, 0.77 4, 1000, 256, 186.87, 0.75 4, 1000, 512, 182.91, 0.73 4, 1000, 1024, 180.66, 0.72 4, 1000, 2048, 175.04, 0.70 8, 100, 16, 171.01, 0.68 8, 100, 64, 177.53, 0.71 8, 100, 128, 168.92, 0.68 8, 100, 256, 165.23, 0.66 8, 100, 512, 162.25, 0.65 8, 100, 1024, 158.87, 0.64 8, 100, 2048, 155.39, 0.62 8, 120, 16, 173.77, 0.70 8, 120, 64, 178.34, 0.71 8, 120, 128, 168.66, 0.67 8, 120, 256, 165.60, 0.66 8, 120, 512, 162.30, 0.65 8, 120, 1024, 159.38, 0.64 8, 120, 2048, 156.17, 0.62 8, 1000, 16, 171.34, 0.69 8, 1000, 64, 178.96, 0.72 8, 1000, 128, 169.71, 0.68 8, 1000, 256, 165.62, 0.66 8, 1000, 512, 162.98, 0.65 8, 1000, 1024, 161.59, 0.65 8, 1000, 2048, 157.16, 0.63 After: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 1006.83, 4.03 2, 100, 64, 1542.11, 6.17 2, 100, 128, 1882.99, 7.53 2, 100, 256, 2063.71, 8.25 2, 100, 512, 2232.29, 8.93 2, 100, 1024, 2298.69, 9.19 2, 100, 2048, 2333.73, 9.33 2, 120, 16, 1016.40, 4.07 2, 120, 64, 1524.36, 6.10 2, 120, 128, 1853.40, 7.41 2, 120, 256, 2158.92, 8.64 2, 120, 512, 2321.61, 9.29 2, 120, 1024, 2353.80, 9.42 2, 120, 2048, 2332.84, 9.33 2, 1000, 16, 1129.08, 4.52 2, 1000, 64, 1606.46, 6.43 2, 1000, 128, 2095.33, 8.38 2, 1000, 256, 2470.88, 9.88 2, 1000, 512, 2746.67, 10.99 2, 1000, 1024, 2882.32, 11.53 2, 1000, 2048, 2447.96, 9.79 4, 100, 16, 999.05, 4.00 4, 100, 64, 1666.00, 6.66 4, 100, 128, 2062.08, 8.25 4, 100, 256, 2226.33, 8.91 4, 100, 512, 2481.11, 9.92 4, 100, 1024, 2717.50, 10.87 4, 100, 2048, 2656.00, 10.62 4, 120, 16, 1056.31, 4.23 4, 120, 64, 1651.95, 6.61 4, 120, 128, 2058.65, 8.23 4, 120, 256, 2339.64, 9.36 4, 120, 512, 2570.03, 10.28 4, 120, 1024, 2788.24, 11.15 4, 120, 2048, 2701.20, 10.80 4, 1000, 16, 1184.28, 4.74 4, 1000, 64, 1765.47, 7.06 4, 1000, 128, 2348.17, 9.39 4, 1000, 256, 2852.72, 11.41 4, 1000, 512, 3249.46, 13.00 4, 1000, 1024, 3418.46, 13.67 4, 1000, 2048, 2841.77, 11.37 8, 100, 16, 1176.35, 4.71 8, 100, 64, 1902.76, 7.61 8, 100, 128, 2196.23, 8.78 8, 100, 256, 2596.55, 10.39 8, 100, 512, 2814.30, 11.26 8, 100, 1024, 3175.49, 12.70 8, 100, 2048, 3334.41, 13.34 8, 120, 16, 1213.55, 4.85 8, 120, 64, 1806.19, 7.22 8, 120, 128, 2390.64, 9.56 8, 120, 256, 2736.11, 10.94 8, 120, 512, 3015.86, 12.06 8, 120, 1024, 3332.53, 13.33 8, 120, 2048, 3319.50, 13.28 8, 1000, 16, 1362.12, 5.45 8, 1000, 64, 2029.25, 8.12 8, 1000, 128, 2759.50, 11.04 8, 1000, 256, 3532.71, 14.13 8, 1000, 512, 4014.48, 16.06 8, 1000, 1024, 4240.49, 16.96 8, 1000, 2048, 3440.59, 13.76 Reviewed By: mcfi Differential Revision: D86774172
5341dfd to
2a4a5f5
Compare
Nicoshev
added a commit
to Nicoshev/FBGEMM
that referenced
this pull request
Nov 17, 2025
…lf (pytorch#5115) Summary: X-link: facebookresearch/FBGEMM#2121 Adding NEON translation of FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf, used by Ads Performance improves by an order of magnitude: Before: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 211.26, 0.85 2, 100, 64, 210.96, 0.84 2, 100, 128, 204.26, 0.82 2, 100, 256, 200.47, 0.80 2, 100, 512, 194.19, 0.78 2, 100, 1024, 190.98, 0.76 2, 100, 2048, 186.85, 0.75 2, 120, 16, 206.88, 0.83 2, 120, 64, 211.64, 0.85 2, 120, 128, 203.97, 0.82 2, 120, 256, 200.22, 0.80 2, 120, 512, 194.97, 0.78 2, 120, 1024, 191.76, 0.77 2, 120, 2048, 187.45, 0.75 2, 1000, 16, 205.10, 0.82 2, 1000, 64, 214.15, 0.86 2, 1000, 128, 205.43, 0.82 2, 1000, 256, 200.34, 0.80 2, 1000, 512, 196.62, 0.79 2, 1000, 1024, 194.64, 0.78 2, 1000, 2048, 187.54, 0.75 4, 100, 16, 197.97, 0.79 4, 100, 64, 200.02, 0.80 4, 100, 128, 191.06, 0.76 4, 100, 256, 186.58, 0.75 4, 100, 512, 180.76, 0.72 4, 100, 1024, 176.65, 0.71 4, 100, 2048, 175.00, 0.70 4, 120, 16, 198.93, 0.80 4, 120, 64, 201.74, 0.81 4, 120, 128, 190.95, 0.76 4, 120, 256, 186.79, 0.75 4, 120, 512, 181.32, 0.73 4, 120, 1024, 177.54, 0.71 4, 120, 2048, 174.69, 0.70 4, 1000, 16, 194.63, 0.78 4, 1000, 64, 201.64, 0.81 4, 1000, 128, 191.78, 0.77 4, 1000, 256, 186.87, 0.75 4, 1000, 512, 182.91, 0.73 4, 1000, 1024, 180.66, 0.72 4, 1000, 2048, 175.04, 0.70 8, 100, 16, 171.01, 0.68 8, 100, 64, 177.53, 0.71 8, 100, 128, 168.92, 0.68 8, 100, 256, 165.23, 0.66 8, 100, 512, 162.25, 0.65 8, 100, 1024, 158.87, 0.64 8, 100, 2048, 155.39, 0.62 8, 120, 16, 173.77, 0.70 8, 120, 64, 178.34, 0.71 8, 120, 128, 168.66, 0.67 8, 120, 256, 165.60, 0.66 8, 120, 512, 162.30, 0.65 8, 120, 1024, 159.38, 0.64 8, 120, 2048, 156.17, 0.62 8, 1000, 16, 171.34, 0.69 8, 1000, 64, 178.96, 0.72 8, 1000, 128, 169.71, 0.68 8, 1000, 256, 165.62, 0.66 8, 1000, 512, 162.98, 0.65 8, 1000, 1024, 161.59, 0.65 8, 1000, 2048, 157.16, 0.63 After: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 1006.83, 4.03 2, 100, 64, 1542.11, 6.17 2, 100, 128, 1882.99, 7.53 2, 100, 256, 2063.71, 8.25 2, 100, 512, 2232.29, 8.93 2, 100, 1024, 2298.69, 9.19 2, 100, 2048, 2333.73, 9.33 2, 120, 16, 1016.40, 4.07 2, 120, 64, 1524.36, 6.10 2, 120, 128, 1853.40, 7.41 2, 120, 256, 2158.92, 8.64 2, 120, 512, 2321.61, 9.29 2, 120, 1024, 2353.80, 9.42 2, 120, 2048, 2332.84, 9.33 2, 1000, 16, 1129.08, 4.52 2, 1000, 64, 1606.46, 6.43 2, 1000, 128, 2095.33, 8.38 2, 1000, 256, 2470.88, 9.88 2, 1000, 512, 2746.67, 10.99 2, 1000, 1024, 2882.32, 11.53 2, 1000, 2048, 2447.96, 9.79 4, 100, 16, 999.05, 4.00 4, 100, 64, 1666.00, 6.66 4, 100, 128, 2062.08, 8.25 4, 100, 256, 2226.33, 8.91 4, 100, 512, 2481.11, 9.92 4, 100, 1024, 2717.50, 10.87 4, 100, 2048, 2656.00, 10.62 4, 120, 16, 1056.31, 4.23 4, 120, 64, 1651.95, 6.61 4, 120, 128, 2058.65, 8.23 4, 120, 256, 2339.64, 9.36 4, 120, 512, 2570.03, 10.28 4, 120, 1024, 2788.24, 11.15 4, 120, 2048, 2701.20, 10.80 4, 1000, 16, 1184.28, 4.74 4, 1000, 64, 1765.47, 7.06 4, 1000, 128, 2348.17, 9.39 4, 1000, 256, 2852.72, 11.41 4, 1000, 512, 3249.46, 13.00 4, 1000, 1024, 3418.46, 13.67 4, 1000, 2048, 2841.77, 11.37 8, 100, 16, 1176.35, 4.71 8, 100, 64, 1902.76, 7.61 8, 100, 128, 2196.23, 8.78 8, 100, 256, 2596.55, 10.39 8, 100, 512, 2814.30, 11.26 8, 100, 1024, 3175.49, 12.70 8, 100, 2048, 3334.41, 13.34 8, 120, 16, 1213.55, 4.85 8, 120, 64, 1806.19, 7.22 8, 120, 128, 2390.64, 9.56 8, 120, 256, 2736.11, 10.94 8, 120, 512, 3015.86, 12.06 8, 120, 1024, 3332.53, 13.33 8, 120, 2048, 3319.50, 13.28 8, 1000, 16, 1362.12, 5.45 8, 1000, 64, 2029.25, 8.12 8, 1000, 128, 2759.50, 11.04 8, 1000, 256, 3532.71, 14.13 8, 1000, 512, 4014.48, 16.06 8, 1000, 1024, 4240.49, 16.96 8, 1000, 2048, 3440.59, 13.76 Differential Revision: D86774172
Nicoshev
added a commit
to Nicoshev/FBGEMM
that referenced
this pull request
Nov 17, 2025
…lf (pytorch#5115) Summary: X-link: facebookresearch/FBGEMM#2121 Adding NEON translation of FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf, used by Ads Performance improves by an order of magnitude: Before: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 211.26, 0.85 2, 100, 64, 210.96, 0.84 2, 100, 128, 204.26, 0.82 2, 100, 256, 200.47, 0.80 2, 100, 512, 194.19, 0.78 2, 100, 1024, 190.98, 0.76 2, 100, 2048, 186.85, 0.75 2, 120, 16, 206.88, 0.83 2, 120, 64, 211.64, 0.85 2, 120, 128, 203.97, 0.82 2, 120, 256, 200.22, 0.80 2, 120, 512, 194.97, 0.78 2, 120, 1024, 191.76, 0.77 2, 120, 2048, 187.45, 0.75 2, 1000, 16, 205.10, 0.82 2, 1000, 64, 214.15, 0.86 2, 1000, 128, 205.43, 0.82 2, 1000, 256, 200.34, 0.80 2, 1000, 512, 196.62, 0.79 2, 1000, 1024, 194.64, 0.78 2, 1000, 2048, 187.54, 0.75 4, 100, 16, 197.97, 0.79 4, 100, 64, 200.02, 0.80 4, 100, 128, 191.06, 0.76 4, 100, 256, 186.58, 0.75 4, 100, 512, 180.76, 0.72 4, 100, 1024, 176.65, 0.71 4, 100, 2048, 175.00, 0.70 4, 120, 16, 198.93, 0.80 4, 120, 64, 201.74, 0.81 4, 120, 128, 190.95, 0.76 4, 120, 256, 186.79, 0.75 4, 120, 512, 181.32, 0.73 4, 120, 1024, 177.54, 0.71 4, 120, 2048, 174.69, 0.70 4, 1000, 16, 194.63, 0.78 4, 1000, 64, 201.64, 0.81 4, 1000, 128, 191.78, 0.77 4, 1000, 256, 186.87, 0.75 4, 1000, 512, 182.91, 0.73 4, 1000, 1024, 180.66, 0.72 4, 1000, 2048, 175.04, 0.70 8, 100, 16, 171.01, 0.68 8, 100, 64, 177.53, 0.71 8, 100, 128, 168.92, 0.68 8, 100, 256, 165.23, 0.66 8, 100, 512, 162.25, 0.65 8, 100, 1024, 158.87, 0.64 8, 100, 2048, 155.39, 0.62 8, 120, 16, 173.77, 0.70 8, 120, 64, 178.34, 0.71 8, 120, 128, 168.66, 0.67 8, 120, 256, 165.60, 0.66 8, 120, 512, 162.30, 0.65 8, 120, 1024, 159.38, 0.64 8, 120, 2048, 156.17, 0.62 8, 1000, 16, 171.34, 0.69 8, 1000, 64, 178.96, 0.72 8, 1000, 128, 169.71, 0.68 8, 1000, 256, 165.62, 0.66 8, 1000, 512, 162.98, 0.65 8, 1000, 1024, 161.59, 0.65 8, 1000, 2048, 157.16, 0.63 After: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 1006.83, 4.03 2, 100, 64, 1542.11, 6.17 2, 100, 128, 1882.99, 7.53 2, 100, 256, 2063.71, 8.25 2, 100, 512, 2232.29, 8.93 2, 100, 1024, 2298.69, 9.19 2, 100, 2048, 2333.73, 9.33 2, 120, 16, 1016.40, 4.07 2, 120, 64, 1524.36, 6.10 2, 120, 128, 1853.40, 7.41 2, 120, 256, 2158.92, 8.64 2, 120, 512, 2321.61, 9.29 2, 120, 1024, 2353.80, 9.42 2, 120, 2048, 2332.84, 9.33 2, 1000, 16, 1129.08, 4.52 2, 1000, 64, 1606.46, 6.43 2, 1000, 128, 2095.33, 8.38 2, 1000, 256, 2470.88, 9.88 2, 1000, 512, 2746.67, 10.99 2, 1000, 1024, 2882.32, 11.53 2, 1000, 2048, 2447.96, 9.79 4, 100, 16, 999.05, 4.00 4, 100, 64, 1666.00, 6.66 4, 100, 128, 2062.08, 8.25 4, 100, 256, 2226.33, 8.91 4, 100, 512, 2481.11, 9.92 4, 100, 1024, 2717.50, 10.87 4, 100, 2048, 2656.00, 10.62 4, 120, 16, 1056.31, 4.23 4, 120, 64, 1651.95, 6.61 4, 120, 128, 2058.65, 8.23 4, 120, 256, 2339.64, 9.36 4, 120, 512, 2570.03, 10.28 4, 120, 1024, 2788.24, 11.15 4, 120, 2048, 2701.20, 10.80 4, 1000, 16, 1184.28, 4.74 4, 1000, 64, 1765.47, 7.06 4, 1000, 128, 2348.17, 9.39 4, 1000, 256, 2852.72, 11.41 4, 1000, 512, 3249.46, 13.00 4, 1000, 1024, 3418.46, 13.67 4, 1000, 2048, 2841.77, 11.37 8, 100, 16, 1176.35, 4.71 8, 100, 64, 1902.76, 7.61 8, 100, 128, 2196.23, 8.78 8, 100, 256, 2596.55, 10.39 8, 100, 512, 2814.30, 11.26 8, 100, 1024, 3175.49, 12.70 8, 100, 2048, 3334.41, 13.34 8, 120, 16, 1213.55, 4.85 8, 120, 64, 1806.19, 7.22 8, 120, 128, 2390.64, 9.56 8, 120, 256, 2736.11, 10.94 8, 120, 512, 3015.86, 12.06 8, 120, 1024, 3332.53, 13.33 8, 120, 2048, 3319.50, 13.28 8, 1000, 16, 1362.12, 5.45 8, 1000, 64, 2029.25, 8.12 8, 1000, 128, 2759.50, 11.04 8, 1000, 256, 3532.71, 14.13 8, 1000, 512, 4014.48, 16.06 8, 1000, 1024, 4240.49, 16.96 8, 1000, 2048, 3440.59, 13.76 Differential Revision: D86774172
1f61f25 to
16a2f5a
Compare
Nicoshev
added a commit
to Nicoshev/FBGEMM
that referenced
this pull request
Nov 18, 2025
…lf (pytorch#5115) Summary: X-link: facebookresearch/FBGEMM#2121 Adding NEON translation of FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf, used by Ads Performance improves by an order of magnitude: Before: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 211.26, 0.85 2, 100, 64, 210.96, 0.84 2, 100, 128, 204.26, 0.82 2, 100, 256, 200.47, 0.80 2, 100, 512, 194.19, 0.78 2, 100, 1024, 190.98, 0.76 2, 100, 2048, 186.85, 0.75 2, 120, 16, 206.88, 0.83 2, 120, 64, 211.64, 0.85 2, 120, 128, 203.97, 0.82 2, 120, 256, 200.22, 0.80 2, 120, 512, 194.97, 0.78 2, 120, 1024, 191.76, 0.77 2, 120, 2048, 187.45, 0.75 2, 1000, 16, 205.10, 0.82 2, 1000, 64, 214.15, 0.86 2, 1000, 128, 205.43, 0.82 2, 1000, 256, 200.34, 0.80 2, 1000, 512, 196.62, 0.79 2, 1000, 1024, 194.64, 0.78 2, 1000, 2048, 187.54, 0.75 4, 100, 16, 197.97, 0.79 4, 100, 64, 200.02, 0.80 4, 100, 128, 191.06, 0.76 4, 100, 256, 186.58, 0.75 4, 100, 512, 180.76, 0.72 4, 100, 1024, 176.65, 0.71 4, 100, 2048, 175.00, 0.70 4, 120, 16, 198.93, 0.80 4, 120, 64, 201.74, 0.81 4, 120, 128, 190.95, 0.76 4, 120, 256, 186.79, 0.75 4, 120, 512, 181.32, 0.73 4, 120, 1024, 177.54, 0.71 4, 120, 2048, 174.69, 0.70 4, 1000, 16, 194.63, 0.78 4, 1000, 64, 201.64, 0.81 4, 1000, 128, 191.78, 0.77 4, 1000, 256, 186.87, 0.75 4, 1000, 512, 182.91, 0.73 4, 1000, 1024, 180.66, 0.72 4, 1000, 2048, 175.04, 0.70 8, 100, 16, 171.01, 0.68 8, 100, 64, 177.53, 0.71 8, 100, 128, 168.92, 0.68 8, 100, 256, 165.23, 0.66 8, 100, 512, 162.25, 0.65 8, 100, 1024, 158.87, 0.64 8, 100, 2048, 155.39, 0.62 8, 120, 16, 173.77, 0.70 8, 120, 64, 178.34, 0.71 8, 120, 128, 168.66, 0.67 8, 120, 256, 165.60, 0.66 8, 120, 512, 162.30, 0.65 8, 120, 1024, 159.38, 0.64 8, 120, 2048, 156.17, 0.62 8, 1000, 16, 171.34, 0.69 8, 1000, 64, 178.96, 0.72 8, 1000, 128, 169.71, 0.68 8, 1000, 256, 165.62, 0.66 8, 1000, 512, 162.98, 0.65 8, 1000, 1024, 161.59, 0.65 8, 1000, 2048, 157.16, 0.63 After: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 1006.83, 4.03 2, 100, 64, 1542.11, 6.17 2, 100, 128, 1882.99, 7.53 2, 100, 256, 2063.71, 8.25 2, 100, 512, 2232.29, 8.93 2, 100, 1024, 2298.69, 9.19 2, 100, 2048, 2333.73, 9.33 2, 120, 16, 1016.40, 4.07 2, 120, 64, 1524.36, 6.10 2, 120, 128, 1853.40, 7.41 2, 120, 256, 2158.92, 8.64 2, 120, 512, 2321.61, 9.29 2, 120, 1024, 2353.80, 9.42 2, 120, 2048, 2332.84, 9.33 2, 1000, 16, 1129.08, 4.52 2, 1000, 64, 1606.46, 6.43 2, 1000, 128, 2095.33, 8.38 2, 1000, 256, 2470.88, 9.88 2, 1000, 512, 2746.67, 10.99 2, 1000, 1024, 2882.32, 11.53 2, 1000, 2048, 2447.96, 9.79 4, 100, 16, 999.05, 4.00 4, 100, 64, 1666.00, 6.66 4, 100, 128, 2062.08, 8.25 4, 100, 256, 2226.33, 8.91 4, 100, 512, 2481.11, 9.92 4, 100, 1024, 2717.50, 10.87 4, 100, 2048, 2656.00, 10.62 4, 120, 16, 1056.31, 4.23 4, 120, 64, 1651.95, 6.61 4, 120, 128, 2058.65, 8.23 4, 120, 256, 2339.64, 9.36 4, 120, 512, 2570.03, 10.28 4, 120, 1024, 2788.24, 11.15 4, 120, 2048, 2701.20, 10.80 4, 1000, 16, 1184.28, 4.74 4, 1000, 64, 1765.47, 7.06 4, 1000, 128, 2348.17, 9.39 4, 1000, 256, 2852.72, 11.41 4, 1000, 512, 3249.46, 13.00 4, 1000, 1024, 3418.46, 13.67 4, 1000, 2048, 2841.77, 11.37 8, 100, 16, 1176.35, 4.71 8, 100, 64, 1902.76, 7.61 8, 100, 128, 2196.23, 8.78 8, 100, 256, 2596.55, 10.39 8, 100, 512, 2814.30, 11.26 8, 100, 1024, 3175.49, 12.70 8, 100, 2048, 3334.41, 13.34 8, 120, 16, 1213.55, 4.85 8, 120, 64, 1806.19, 7.22 8, 120, 128, 2390.64, 9.56 8, 120, 256, 2736.11, 10.94 8, 120, 512, 3015.86, 12.06 8, 120, 1024, 3332.53, 13.33 8, 120, 2048, 3319.50, 13.28 8, 1000, 16, 1362.12, 5.45 8, 1000, 64, 2029.25, 8.12 8, 1000, 128, 2759.50, 11.04 8, 1000, 256, 3532.71, 14.13 8, 1000, 512, 4014.48, 16.06 8, 1000, 1024, 4240.49, 16.96 8, 1000, 2048, 3440.59, 13.76 Differential Revision: D86774172
…lf (pytorch#5115) Summary: X-link: facebookresearch/FBGEMM#2121 Adding NEON translation of FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf, used by Ads Performance improves by an order of magnitude: Before: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 211.26, 0.85 2, 100, 64, 210.96, 0.84 2, 100, 128, 204.26, 0.82 2, 100, 256, 200.47, 0.80 2, 100, 512, 194.19, 0.78 2, 100, 1024, 190.98, 0.76 2, 100, 2048, 186.85, 0.75 2, 120, 16, 206.88, 0.83 2, 120, 64, 211.64, 0.85 2, 120, 128, 203.97, 0.82 2, 120, 256, 200.22, 0.80 2, 120, 512, 194.97, 0.78 2, 120, 1024, 191.76, 0.77 2, 120, 2048, 187.45, 0.75 2, 1000, 16, 205.10, 0.82 2, 1000, 64, 214.15, 0.86 2, 1000, 128, 205.43, 0.82 2, 1000, 256, 200.34, 0.80 2, 1000, 512, 196.62, 0.79 2, 1000, 1024, 194.64, 0.78 2, 1000, 2048, 187.54, 0.75 4, 100, 16, 197.97, 0.79 4, 100, 64, 200.02, 0.80 4, 100, 128, 191.06, 0.76 4, 100, 256, 186.58, 0.75 4, 100, 512, 180.76, 0.72 4, 100, 1024, 176.65, 0.71 4, 100, 2048, 175.00, 0.70 4, 120, 16, 198.93, 0.80 4, 120, 64, 201.74, 0.81 4, 120, 128, 190.95, 0.76 4, 120, 256, 186.79, 0.75 4, 120, 512, 181.32, 0.73 4, 120, 1024, 177.54, 0.71 4, 120, 2048, 174.69, 0.70 4, 1000, 16, 194.63, 0.78 4, 1000, 64, 201.64, 0.81 4, 1000, 128, 191.78, 0.77 4, 1000, 256, 186.87, 0.75 4, 1000, 512, 182.91, 0.73 4, 1000, 1024, 180.66, 0.72 4, 1000, 2048, 175.04, 0.70 8, 100, 16, 171.01, 0.68 8, 100, 64, 177.53, 0.71 8, 100, 128, 168.92, 0.68 8, 100, 256, 165.23, 0.66 8, 100, 512, 162.25, 0.65 8, 100, 1024, 158.87, 0.64 8, 100, 2048, 155.39, 0.62 8, 120, 16, 173.77, 0.70 8, 120, 64, 178.34, 0.71 8, 120, 128, 168.66, 0.67 8, 120, 256, 165.60, 0.66 8, 120, 512, 162.30, 0.65 8, 120, 1024, 159.38, 0.64 8, 120, 2048, 156.17, 0.62 8, 1000, 16, 171.34, 0.69 8, 1000, 64, 178.96, 0.72 8, 1000, 128, 169.71, 0.68 8, 1000, 256, 165.62, 0.66 8, 1000, 512, 162.98, 0.65 8, 1000, 1024, 161.59, 0.65 8, 1000, 2048, 157.16, 0.63 After: bit_rate rows, cols, elems_per_usec, GB/Sec 2, 100, 16, 1006.83, 4.03 2, 100, 64, 1542.11, 6.17 2, 100, 128, 1882.99, 7.53 2, 100, 256, 2063.71, 8.25 2, 100, 512, 2232.29, 8.93 2, 100, 1024, 2298.69, 9.19 2, 100, 2048, 2333.73, 9.33 2, 120, 16, 1016.40, 4.07 2, 120, 64, 1524.36, 6.10 2, 120, 128, 1853.40, 7.41 2, 120, 256, 2158.92, 8.64 2, 120, 512, 2321.61, 9.29 2, 120, 1024, 2353.80, 9.42 2, 120, 2048, 2332.84, 9.33 2, 1000, 16, 1129.08, 4.52 2, 1000, 64, 1606.46, 6.43 2, 1000, 128, 2095.33, 8.38 2, 1000, 256, 2470.88, 9.88 2, 1000, 512, 2746.67, 10.99 2, 1000, 1024, 2882.32, 11.53 2, 1000, 2048, 2447.96, 9.79 4, 100, 16, 999.05, 4.00 4, 100, 64, 1666.00, 6.66 4, 100, 128, 2062.08, 8.25 4, 100, 256, 2226.33, 8.91 4, 100, 512, 2481.11, 9.92 4, 100, 1024, 2717.50, 10.87 4, 100, 2048, 2656.00, 10.62 4, 120, 16, 1056.31, 4.23 4, 120, 64, 1651.95, 6.61 4, 120, 128, 2058.65, 8.23 4, 120, 256, 2339.64, 9.36 4, 120, 512, 2570.03, 10.28 4, 120, 1024, 2788.24, 11.15 4, 120, 2048, 2701.20, 10.80 4, 1000, 16, 1184.28, 4.74 4, 1000, 64, 1765.47, 7.06 4, 1000, 128, 2348.17, 9.39 4, 1000, 256, 2852.72, 11.41 4, 1000, 512, 3249.46, 13.00 4, 1000, 1024, 3418.46, 13.67 4, 1000, 2048, 2841.77, 11.37 8, 100, 16, 1176.35, 4.71 8, 100, 64, 1902.76, 7.61 8, 100, 128, 2196.23, 8.78 8, 100, 256, 2596.55, 10.39 8, 100, 512, 2814.30, 11.26 8, 100, 1024, 3175.49, 12.70 8, 100, 2048, 3334.41, 13.34 8, 120, 16, 1213.55, 4.85 8, 120, 64, 1806.19, 7.22 8, 120, 128, 2390.64, 9.56 8, 120, 256, 2736.11, 10.94 8, 120, 512, 3015.86, 12.06 8, 120, 1024, 3332.53, 13.33 8, 120, 2048, 3319.50, 13.28 8, 1000, 16, 1362.12, 5.45 8, 1000, 64, 2029.25, 8.12 8, 1000, 128, 2759.50, 11.04 8, 1000, 256, 3532.71, 14.13 8, 1000, 512, 4014.48, 16.06 8, 1000, 1024, 4240.49, 16.96 8, 1000, 2048, 3440.59, 13.76 Differential Revision: D86774172
16a2f5a to
b1ad984
Compare
Contributor
|
This pull request has been merged in 23d7a88. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Summary:
Adding NEON translation of FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf, used by Ads
Performance improves by an order of magnitude:
Before:
bit_rate rows, cols, elems_per_usec, GB/Sec
2, 100, 16, 211.26, 0.85
2, 100, 64, 210.96, 0.84
2, 100, 128, 204.26, 0.82
2, 100, 256, 200.47, 0.80
2, 100, 512, 194.19, 0.78
2, 100, 1024, 190.98, 0.76
2, 100, 2048, 186.85, 0.75
2, 120, 16, 206.88, 0.83
2, 120, 64, 211.64, 0.85
2, 120, 128, 203.97, 0.82
2, 120, 256, 200.22, 0.80
2, 120, 512, 194.97, 0.78
2, 120, 1024, 191.76, 0.77
2, 120, 2048, 187.45, 0.75
2, 1000, 16, 205.10, 0.82
2, 1000, 64, 214.15, 0.86
2, 1000, 128, 205.43, 0.82
2, 1000, 256, 200.34, 0.80
2, 1000, 512, 196.62, 0.79
2, 1000, 1024, 194.64, 0.78
2, 1000, 2048, 187.54, 0.75
4, 100, 16, 197.97, 0.79
4, 100, 64, 200.02, 0.80
4, 100, 128, 191.06, 0.76
4, 100, 256, 186.58, 0.75
4, 100, 512, 180.76, 0.72
4, 100, 1024, 176.65, 0.71
4, 100, 2048, 175.00, 0.70
4, 120, 16, 198.93, 0.80
4, 120, 64, 201.74, 0.81
4, 120, 128, 190.95, 0.76
4, 120, 256, 186.79, 0.75
4, 120, 512, 181.32, 0.73
4, 120, 1024, 177.54, 0.71
4, 120, 2048, 174.69, 0.70
4, 1000, 16, 194.63, 0.78
4, 1000, 64, 201.64, 0.81
4, 1000, 128, 191.78, 0.77
4, 1000, 256, 186.87, 0.75
4, 1000, 512, 182.91, 0.73
4, 1000, 1024, 180.66, 0.72
4, 1000, 2048, 175.04, 0.70
8, 100, 16, 171.01, 0.68
8, 100, 64, 177.53, 0.71
8, 100, 128, 168.92, 0.68
8, 100, 256, 165.23, 0.66
8, 100, 512, 162.25, 0.65
8, 100, 1024, 158.87, 0.64
8, 100, 2048, 155.39, 0.62
8, 120, 16, 173.77, 0.70
8, 120, 64, 178.34, 0.71
8, 120, 128, 168.66, 0.67
8, 120, 256, 165.60, 0.66
8, 120, 512, 162.30, 0.65
8, 120, 1024, 159.38, 0.64
8, 120, 2048, 156.17, 0.62
8, 1000, 16, 171.34, 0.69
8, 1000, 64, 178.96, 0.72
8, 1000, 128, 169.71, 0.68
8, 1000, 256, 165.62, 0.66
8, 1000, 512, 162.98, 0.65
8, 1000, 1024, 161.59, 0.65
8, 1000, 2048, 157.16, 0.63
After:
bit_rate rows, cols, elems_per_usec, GB/Sec
2, 100, 16, 1006.83, 4.03
2, 100, 64, 1542.11, 6.17
2, 100, 128, 1882.99, 7.53
2, 100, 256, 2063.71, 8.25
2, 100, 512, 2232.29, 8.93
2, 100, 1024, 2298.69, 9.19
2, 100, 2048, 2333.73, 9.33
2, 120, 16, 1016.40, 4.07
2, 120, 64, 1524.36, 6.10
2, 120, 128, 1853.40, 7.41
2, 120, 256, 2158.92, 8.64
2, 120, 512, 2321.61, 9.29
2, 120, 1024, 2353.80, 9.42
2, 120, 2048, 2332.84, 9.33
2, 1000, 16, 1129.08, 4.52
2, 1000, 64, 1606.46, 6.43
2, 1000, 128, 2095.33, 8.38
2, 1000, 256, 2470.88, 9.88
2, 1000, 512, 2746.67, 10.99
2, 1000, 1024, 2882.32, 11.53
2, 1000, 2048, 2447.96, 9.79
4, 100, 16, 999.05, 4.00
4, 100, 64, 1666.00, 6.66
4, 100, 128, 2062.08, 8.25
4, 100, 256, 2226.33, 8.91
4, 100, 512, 2481.11, 9.92
4, 100, 1024, 2717.50, 10.87
4, 100, 2048, 2656.00, 10.62
4, 120, 16, 1056.31, 4.23
4, 120, 64, 1651.95, 6.61
4, 120, 128, 2058.65, 8.23
4, 120, 256, 2339.64, 9.36
4, 120, 512, 2570.03, 10.28
4, 120, 1024, 2788.24, 11.15
4, 120, 2048, 2701.20, 10.80
4, 1000, 16, 1184.28, 4.74
4, 1000, 64, 1765.47, 7.06
4, 1000, 128, 2348.17, 9.39
4, 1000, 256, 2852.72, 11.41
4, 1000, 512, 3249.46, 13.00
4, 1000, 1024, 3418.46, 13.67
4, 1000, 2048, 2841.77, 11.37
8, 100, 16, 1176.35, 4.71
8, 100, 64, 1902.76, 7.61
8, 100, 128, 2196.23, 8.78
8, 100, 256, 2596.55, 10.39
8, 100, 512, 2814.30, 11.26
8, 100, 1024, 3175.49, 12.70
8, 100, 2048, 3334.41, 13.34
8, 120, 16, 1213.55, 4.85
8, 120, 64, 1806.19, 7.22
8, 120, 128, 2390.64, 9.56
8, 120, 256, 2736.11, 10.94
8, 120, 512, 3015.86, 12.06
8, 120, 1024, 3332.53, 13.33
8, 120, 2048, 3319.50, 13.28
8, 1000, 16, 1362.12, 5.45
8, 1000, 64, 2029.25, 8.12
8, 1000, 128, 2759.50, 11.04
8, 1000, 256, 3532.71, 14.13
8, 1000, 512, 4014.48, 16.06
8, 1000, 1024, 4240.49, 16.96
8, 1000, 2048, 3440.59, 13.76
Differential Revision: D86774172