Skip to content

Support for custom priors via Prior class #488

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion causalpy/experiments/prepostnegd.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ class PrePostNEGD(BaseExperiment):
Intercept -0.5, 94% HDI [-1, 0.2]
C(group)[T.1] 2, 94% HDI [2, 2]
pre 1, 94% HDI [1, 1]
sigma 0.5, 94% HDI [0.5, 0.6]
y_hat_sigma 0.5, 94% HDI [0.5, 0.6]
"""

supports_ols = False
Expand Down
42 changes: 32 additions & 10 deletions causalpy/pymc_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
import pytensor.tensor as pt
import xarray as xr
from arviz import r2_score
from pymc_extras.prior import Prior

from causalpy.utils import round_num

Expand Down Expand Up @@ -68,7 +69,15 @@ class PyMCModel(pm.Model):
Inference data...
"""

def __init__(self, sample_kwargs: Optional[Dict[str, Any]] = None):
@property
def default_priors(self):
return {}

def __init__(
self,
sample_kwargs: Optional[Dict[str, Any]] = None,
priors: dict[str, Any] | None = None,
):
"""
:param sample_kwargs: A dictionary of kwargs that get unpacked and passed to the
:func:`pymc.sample` function. Defaults to an empty dictionary.
Expand All @@ -77,6 +86,8 @@ def __init__(self, sample_kwargs: Optional[Dict[str, Any]] = None):
self.idata = None
self.sample_kwargs = sample_kwargs if sample_kwargs is not None else {}

self.priors = {**self.default_priors, **(priors or {})}

def build_model(self, X, y, coords) -> None:
"""Build the model, must be implemented by subclass."""
raise NotImplementedError("This method must be implemented by a subclass")
Expand Down Expand Up @@ -188,15 +199,15 @@ def print_row(
coeffs = az.extract(self.idata.posterior, var_names="beta")

# Determine the width of the longest label
max_label_length = max(len(name) for name in labels + ["sigma"])
max_label_length = max(len(name) for name in labels + ["y_hat_sigma"])

for name in labels:
coeff_samples = coeffs.sel(coeffs=name)
print_row(max_label_length, name, coeff_samples, round_to)

# Add coefficient for measurement std
coeff_samples = az.extract(self.idata.posterior, var_names="sigma")
name = "sigma"
coeff_samples = az.extract(self.idata.posterior, var_names="y_hat_sigma")
name = "y_hat_sigma"
print_row(max_label_length, name, coeff_samples, round_to)


Expand Down Expand Up @@ -237,6 +248,11 @@ class LinearRegression(PyMCModel):
Inference data...
""" # noqa: W605

default_priors = {
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

need to add @property decorator here? Or is that remembered from it being done in the PyMCModel base class?

Getting an Pylance warning: Type "dict[str, Prior]" is not assignable to declared type "property"

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What line of code bring that on? Maybe having a setter will help?

"beta": Prior("Normal", mu=0, sigma=50, dims="coeffs"),
"y_hat": Prior("Normal", sigma=Prior("HalfNormal", sigma=1), dims="obs_ind"),
}

def build_model(self, X, y, coords):
"""
Defines the PyMC model
Expand All @@ -245,10 +261,9 @@ def build_model(self, X, y, coords):
self.add_coords(coords)
X = pm.Data("X", X, dims=["obs_ind", "coeffs"])
y = pm.Data("y", y, dims="obs_ind")
beta = pm.Normal("beta", 0, 50, dims="coeffs")
sigma = pm.HalfNormal("sigma", 1)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sigma will not be in the model anymore but rather, y_hat_sigma based on the default name generation. Is that breaking change an issue? There is a workaround for this if needed

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't think this is a big deal. I pushed a fix which make tests pass a9f821c (well looks like there is one failing doctest)

beta = self.priors["beta"].create_variable("beta")
mu = pm.Deterministic("mu", pm.math.dot(X, beta), dims="obs_ind")
pm.Normal("y_hat", mu, sigma, observed=y, dims="obs_ind")
self.priors["y_hat"].create_likelihood_variable("y_hat", mu=mu, observed=y)


class WeightedSumFitter(PyMCModel):
Expand Down Expand Up @@ -276,6 +291,10 @@ class WeightedSumFitter(PyMCModel):
Inference data...
""" # noqa: W605

default_priors = {
"y_hat": Prior("Normal", sigma=Prior("HalfNormal", sigma=1), dims="obs_ind"),
}

def build_model(self, X, y, coords):
"""
Defines the PyMC model
Expand All @@ -286,9 +305,8 @@ def build_model(self, X, y, coords):
X = pm.Data("X", X, dims=["obs_ind", "coeffs"])
y = pm.Data("y", y[:, 0], dims="obs_ind")
beta = pm.Dirichlet("beta", a=np.ones(n_predictors), dims="coeffs")
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We definitely want a custom prior for the Dirichlet. I think the Dirichlet would be used always (or nearly always), but there are plenty of real world use cases where the user might want to change the hyper parameters (currently a=np.ones(n_predictors)).

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Alright. since it is function of data, we will have to handle differently

sigma = pm.HalfNormal("sigma", 1)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same breaking change concern

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Replied above

mu = pm.Deterministic("mu", pm.math.dot(X, beta), dims="obs_ind")
pm.Normal("y_hat", mu, sigma, observed=y, dims="obs_ind")
self.priors["y_hat"].create_likelihood_variable("y_hat", mu=mu, observed=y)


class InstrumentalVariableRegression(PyMCModel):
Expand Down Expand Up @@ -477,13 +495,17 @@ class PropensityScore(PyMCModel):
Inference...
""" # noqa: W605

default_priors = {
"b": Prior("Normal", mu=0, sigma=1, dims="coeffs"),
}

def build_model(self, X, t, coords):
"Defines the PyMC propensity model"
with self:
self.add_coords(coords)
X_data = pm.Data("X", X, dims=["obs_ind", "coeffs"])
t_data = pm.Data("t", t.flatten(), dims="obs_ind")
b = pm.Normal("b", mu=0, sigma=1, dims="coeffs")
b = self.priors["b"].create_variable("b")
mu = pm.math.dot(X_data, b)
p = pm.Deterministic("p", pm.math.invlogit(mu))
pm.Bernoulli("t_pred", p=p, observed=t_data, dims="obs_ind")
Expand Down
6 changes: 3 additions & 3 deletions docs/source/_static/interrogate_badge.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -15,3 +15,4 @@ dependencies:
- seaborn>=0.11.2
- statsmodels
- xarray>=v2022.11.0
- pymc-extras>=0.2.7
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ dependencies = [
"seaborn>=0.11.2",
"statsmodels",
"xarray>=v2022.11.0",
"pymc-extras>=0.2.7",
]

# List additional groups of dependencies here (e.g. development dependencies). Users
Expand Down