Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions pytensor/tensor/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -664,6 +664,11 @@ def c_code_cache_version(self):
tensor_from_scalar = TensorFromScalar()


@_vectorize_node.register(TensorFromScalar)
def vectorize_tensor_from_scalar(op, node, batch_x):
return identity(batch_x).owner


class ScalarFromTensor(COp):
__props__ = ()

Expand Down Expand Up @@ -2046,6 +2051,7 @@ def register_transfer(fn):
"""Create a duplicate of `a` (with duplicated storage)"""
tensor_copy = Elemwise(ps.identity)
pprint.assign(tensor_copy, printing.IgnorePrinter())
identity = tensor_copy


class Default(Op):
Expand Down Expand Up @@ -4603,6 +4609,7 @@ def ix_(*args):
"matrix_transpose",
"default",
"tensor_copy",
"identity",
"transfer",
"alloc",
"identity_like",
Expand Down
19 changes: 15 additions & 4 deletions pytensor/tensor/optimize.py
Original file line number Diff line number Diff line change
Expand Up @@ -560,7 +560,10 @@ def L_op(self, inputs, outputs, output_grads):
implicit_f = grad(inner_fx, inner_x)

df_dx, *df_dtheta_columns = jacobian(
implicit_f, [inner_x, *inner_args], disconnected_inputs="ignore"
implicit_f,
[inner_x, *inner_args],
disconnected_inputs="ignore",
vectorize=True,
)
grad_wrt_args = implict_optimization_grads(
df_dx=df_dx,
Expand Down Expand Up @@ -816,7 +819,9 @@ def __init__(
self.fgraph = FunctionGraph([variables, *args], [equations])

if jac:
jac_wrt_x = jacobian(self.fgraph.outputs[0], self.fgraph.inputs[0])
jac_wrt_x = jacobian(
self.fgraph.outputs[0], self.fgraph.inputs[0], vectorize=True
)
self.fgraph.add_output(atleast_2d(jac_wrt_x))

self.jac = jac
Expand Down Expand Up @@ -896,8 +901,14 @@ def L_op(
inner_x, *inner_args = self.fgraph.inputs
inner_fx = self.fgraph.outputs[0]

df_dx = jacobian(inner_fx, inner_x) if not self.jac else self.fgraph.outputs[1]
df_dtheta_columns = jacobian(inner_fx, inner_args, disconnected_inputs="ignore")
df_dx = (
jacobian(inner_fx, inner_x, vectorize=True)
if not self.jac
else self.fgraph.outputs[1]
)
df_dtheta_columns = jacobian(
inner_fx, inner_args, disconnected_inputs="ignore", vectorize=True
)

grad_wrt_args = implict_optimization_grads(
df_dx=df_dx,
Expand Down