Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 9 additions & 1 deletion packages/python/plotly/plotly/express/_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -1419,9 +1419,17 @@ def build_dataframe(args, constructor):
else:
# Save precious resources by only interchanging columns that are
# actually going to be plotted.
columns = [
necessary_columns = [
i for i in args.values() if isinstance(i, str) and i in columns
]
for field in args:
if field in array_attrables and isinstance(
args[field], (list, dict)
):
necessary_columns.extend(
[i for i in args[field] if i in columns]
)
columns = list(dict.fromkeys(necessary_columns))
args["data_frame"] = pd.api.interchange.from_dataframe(
args["data_frame"].select_columns_by_name(columns)
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -327,6 +327,32 @@ def test_build_df_from_vaex_and_polars(test_lib):
)


@pytest.mark.skipif(
version.parse(pd.__version__) < version.parse("2.0.2"),
reason="plotly doesn't use a dataframe interchange protocol for pandas < 2.0.2",
)
@pytest.mark.parametrize("test_lib", ["vaex", "polars"])
def test_build_df_with_hover_data_from_vaex_and_polars(test_lib):
if test_lib == "vaex":
import vaex as lib
else:
import polars as lib

# take out the 'species' columns since the vaex implementation does not cover strings yet
iris_pandas = px.data.iris()[["petal_width", "sepal_length", "sepal_width"]]
iris_vaex = lib.from_pandas(iris_pandas)
args = dict(
data_frame=iris_vaex,
x="petal_width",
y="sepal_length",
hover_data=["sepal_width"],
)
out = build_dataframe(args, go.Scatter)
assert_frame_equal(
iris_pandas.reset_index()[out["data_frame"].columns], out["data_frame"]
)


def test_timezones():
df = pd.DataFrame({"date": ["2015-04-04 19:31:30+1:00"], "value": [3]})
df["date"] = pd.to_datetime(df["date"])
Expand Down