Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions ci/code_checks.sh
Original file line number Diff line number Diff line change
Expand Up @@ -90,12 +90,9 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
pandas.DataFrame.to_sql \
pandas.read_stata \
pandas.plotting.scatter_matrix \
pandas.Index.rename \
pandas.Index.droplevel \
pandas.Index.isin \
pandas.MultiIndex.names \
pandas.MultiIndex.droplevel \
pandas.IndexSlice \
pandas.Grouper \
pandas.io.formats.style.Styler.map \
pandas.io.formats.style.Styler.apply_index \
Expand Down
6 changes: 3 additions & 3 deletions pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1953,7 +1953,7 @@ def rename(self, name, inplace: bool = False) -> Self | None:

>>> idx = pd.MultiIndex.from_product([['python', 'cobra'],
... [2018, 2019]],
... names=['kind', 'year'])
... names=['kind', 'year'])
>>> idx
MultiIndex([('python', 2018),
('python', 2019),
Expand Down Expand Up @@ -6575,7 +6575,7 @@ def isin(self, values, level=None) -> npt.NDArray[np.bool_]:

Examples
--------
>>> idx = pd.Index([1,2,3])
>>> idx = pd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='int64')

Expand All @@ -6584,7 +6584,7 @@ def isin(self, values, level=None) -> npt.NDArray[np.bool_]:
>>> idx.isin([1, 4])
array([ True, False, False])

>>> midx = pd.MultiIndex.from_arrays([[1,2,3],
>>> midx = pd.MultiIndex.from_arrays([[1, 2, 3],
... ['red', 'blue', 'green']],
... names=('number', 'color'))
>>> midx
Expand Down
2 changes: 1 addition & 1 deletion pandas/core/indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ class _IndexSlice:

Examples
--------
>>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']])
>>> midx = pd.MultiIndex.from_product([['A0', 'A1'], ['B0', 'B1', 'B2', 'B3']])
>>> columns = ['foo', 'bar']
>>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))),
... index=midx, columns=columns)
Expand Down