Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.24.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -653,6 +653,7 @@ Reshaping
- Bug in :meth:`Series.where` and :meth:`DataFrame.where` with ``datetime64[ns, tz]`` dtype (:issue:`21546`)
- Bug in :meth:`Series.mask` and :meth:`DataFrame.mask` with ``list`` conditionals (:issue:`21891`)
- Bug in :meth:`DataFrame.replace` raises RecursionError when converting OutOfBounds ``datetime64[ns, tz]`` (:issue:`20380`)
- :func:`pandas.core.groupby.GroupBy.rank` now raises a ``ValueError`` when an invalid value is passed for argument ``na_option`` (:issue:`22124`)
-

Build Changes
Expand Down
3 changes: 3 additions & 0 deletions pandas/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1705,6 +1705,9 @@ def rank(self, method='average', ascending=True, na_option='keep',
-----
DataFrame with ranking of values within each group
"""
if na_option not in {'keep', 'top', 'bottom'}:
msg = "na_option must be one of 'keep', 'top', or 'bottom'"
raise ValueError(msg)
return self._cython_transform('rank', numeric_only=False,
ties_method=method, ascending=ascending,
na_option=na_option, pct=pct, axis=axis)
Expand Down
62 changes: 36 additions & 26 deletions pandas/tests/groupby/test_rank.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,35 +172,35 @@ def test_infs_n_nans(grps, vals, ties_method, ascending, na_option, exp):
[3., 3., np.nan, 1., 3., 2., np.nan, np.nan]),
('dense', False, 'keep', True,
[3. / 3., 3. / 3., np.nan, 1. / 3., 3. / 3., 2. / 3., np.nan, np.nan]),
('average', True, 'no_na', False, [2., 2., 7., 5., 2., 4., 7., 7.]),
('average', True, 'no_na', True,
('average', True, 'bottom', False, [2., 2., 7., 5., 2., 4., 7., 7.]),
('average', True, 'bottom', True,
[0.25, 0.25, 0.875, 0.625, 0.25, 0.5, 0.875, 0.875]),
('average', False, 'no_na', False, [4., 4., 7., 1., 4., 2., 7., 7.]),
('average', False, 'no_na', True,
('average', False, 'bottom', False, [4., 4., 7., 1., 4., 2., 7., 7.]),
('average', False, 'bottom', True,
[0.5, 0.5, 0.875, 0.125, 0.5, 0.25, 0.875, 0.875]),
('min', True, 'no_na', False, [1., 1., 6., 5., 1., 4., 6., 6.]),
('min', True, 'no_na', True,
('min', True, 'bottom', False, [1., 1., 6., 5., 1., 4., 6., 6.]),
('min', True, 'bottom', True,
[0.125, 0.125, 0.75, 0.625, 0.125, 0.5, 0.75, 0.75]),
('min', False, 'no_na', False, [3., 3., 6., 1., 3., 2., 6., 6.]),
('min', False, 'no_na', True,
('min', False, 'bottom', False, [3., 3., 6., 1., 3., 2., 6., 6.]),
('min', False, 'bottom', True,
[0.375, 0.375, 0.75, 0.125, 0.375, 0.25, 0.75, 0.75]),
('max', True, 'no_na', False, [3., 3., 8., 5., 3., 4., 8., 8.]),
('max', True, 'no_na', True,
('max', True, 'bottom', False, [3., 3., 8., 5., 3., 4., 8., 8.]),
('max', True, 'bottom', True,
[0.375, 0.375, 1., 0.625, 0.375, 0.5, 1., 1.]),
('max', False, 'no_na', False, [5., 5., 8., 1., 5., 2., 8., 8.]),
('max', False, 'no_na', True,
('max', False, 'bottom', False, [5., 5., 8., 1., 5., 2., 8., 8.]),
('max', False, 'bottom', True,
[0.625, 0.625, 1., 0.125, 0.625, 0.25, 1., 1.]),
('first', True, 'no_na', False, [1., 2., 6., 5., 3., 4., 7., 8.]),
('first', True, 'no_na', True,
('first', True, 'bottom', False, [1., 2., 6., 5., 3., 4., 7., 8.]),
('first', True, 'bottom', True,
[0.125, 0.25, 0.75, 0.625, 0.375, 0.5, 0.875, 1.]),
('first', False, 'no_na', False, [3., 4., 6., 1., 5., 2., 7., 8.]),
('first', False, 'no_na', True,
('first', False, 'bottom', False, [3., 4., 6., 1., 5., 2., 7., 8.]),
('first', False, 'bottom', True,
[0.375, 0.5, 0.75, 0.125, 0.625, 0.25, 0.875, 1.]),
('dense', True, 'no_na', False, [1., 1., 4., 3., 1., 2., 4., 4.]),
('dense', True, 'no_na', True,
('dense', True, 'bottom', False, [1., 1., 4., 3., 1., 2., 4., 4.]),
('dense', True, 'bottom', True,
[0.25, 0.25, 1., 0.75, 0.25, 0.5, 1., 1.]),
('dense', False, 'no_na', False, [3., 3., 4., 1., 3., 2., 4., 4.]),
('dense', False, 'no_na', True,
('dense', False, 'bottom', False, [3., 3., 4., 1., 3., 2., 4., 4.]),
('dense', False, 'bottom', True,
[0.75, 0.75, 1., 0.25, 0.75, 0.5, 1., 1.])
])
def test_rank_args_missing(grps, vals, ties_method, ascending,
Expand Down Expand Up @@ -252,14 +252,24 @@ def test_rank_object_raises(ties_method, ascending, na_option,
with tm.assert_raises_regex(TypeError, "not callable"):
df.groupby('key').rank(method=ties_method,
ascending=ascending,
na_option='bad', pct=pct)
na_option=na_option, pct=pct)

with tm.assert_raises_regex(TypeError, "not callable"):
df.groupby('key').rank(method=ties_method,
ascending=ascending,
na_option=True, pct=pct)

with tm.assert_raises_regex(TypeError, "not callable"):
@pytest.mark.parametrize("na_option", [True, "bad", 1])
@pytest.mark.parametrize("ties_method", [
'average', 'min', 'max', 'first', 'dense'])
@pytest.mark.parametrize("ascending", [True, False])
@pytest.mark.parametrize("pct", [True, False])
@pytest.mark.parametrize("vals", [
['bar', 'bar', 'foo', 'bar', 'baz'],
['bar', np.nan, 'foo', np.nan, 'baz'],
[1, np.nan, 2, np.nan, 3]
])
def test_rank_naoption_raises(ties_method, ascending, na_option, pct, vals):
df = DataFrame({'key': ['foo'] * 5, 'val': vals})
msg = "na_option must be one of 'keep', 'top', or 'bottom'"

with tm.assert_raises_regex(ValueError, msg):
df.groupby('key').rank(method=ties_method,
ascending=ascending,
na_option=na_option, pct=pct)