-
-
Notifications
You must be signed in to change notification settings - Fork 19.3k
Description
import numpy as np
import pandas as pd
df_left = pd.DataFrame(index=["a", "b"])
df_right = pd.DataFrame({"x": ["a", "c"]})
pd.merge(df_left, df_right, left_index=True, right_on="x", how="left")
# x
# 0.0 a
# NaN bProblem description
This is closely related to #28220 but deals with the values of the DataFrame rather than the index itself. When left joining on an index and a column it looks like the value "b" from the index of df_left is somehow getting carried over to the column x, but "a" should be the only value in this column since it's the only one that matches the index from df_left. This is happening on 0.25.1 and master, and has been a bug for some time according to #28220.
Expected Output
x
a a
b NaNOutput of pd.show_versions()
pandas : 0.25.1
numpy : 1.16.4
pytz : 2019.2
dateutil : 2.8.0
pip : 19.1.1
setuptools : 41.0.1
Cython : None
pytest : 5.0.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.7.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
Seems related to this issue: #17257