Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added testdata/dnn/onnx/data/input_div_test_1x1_0.npy
Binary file not shown.
Binary file added testdata/dnn/onnx/data/input_div_test_1x1_1.npy
Binary file not shown.
Binary file added testdata/dnn/onnx/data/output_div_test_1x1.npy
Binary file not shown.
37 changes: 37 additions & 0 deletions testdata/dnn/onnx/generate_onnx_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,23 @@ def save_data_and_onnx_model(name, input_np, output_np, onnx_model):
with open(models_files, 'wb') as file:
file.write(model_def.SerializeToString())

def save_data_and_onnx_model_multy_inputs(name, input_list, output_np, onnx_model):
for index in range(len(input_list)):
print(name + " input "+str(index)+" has sizes", input_list[index].shape)
input_files = os.path.join("data", "input_" + name + "_" + str(index))
np.save(input_files, input_list[index])

print(name + " output has sizes", output_np.shape)
print()
output_files = os.path.join("data", "output_" + name)
np.save(output_files, np.ascontiguousarray(output_np.data))

models_files = os.path.join("models", name + ".onnx")

onnx_model_pb = onnx._serialize(onnx_model)
model_def = assertONNXExpected(onnx_model_pb)
with open(models_files, 'wb') as file:
file.write(model_def.SerializeToString())

def simplify(name, rename=False, **kwargs):
model, check = onnxsim.simplify(name, **kwargs)
Expand Down Expand Up @@ -2091,3 +2108,23 @@ def gemm_reference_implementation(A: np.ndarray, B: np.ndarray, C: Optional[np.n

output_np = np.sum(input_np, axis=1, keepdims=1)
save_data_and_onnx_model("reduce_sum_axis_dynamic_batch", input_np, output_np, onnx_model)


# ########################## DivBroadcast ##########################
input_np = np.random.rand(1, 4).astype("float32")
input2_np = np.random.rand(1, 1).astype(np.float32)
inputs = [onnx.helper.make_tensor_value_info("input1", onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[input_np.dtype], shape=input_np.shape), \
onnx.helper.make_tensor_value_info("input2", onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[input2_np.dtype], shape=input2_np.shape)]

outputs = [onnx.helper.make_tensor_value_info("output", onnx.TensorProto.FLOAT, shape=(1, 4))]

nodes = [onnx.helper.make_node("Div", ["input1", "input2"], ["output"])]

graph = onnx.helper.make_graph(nodes,
"div_test",
inputs,
outputs)
onnx_model = onnx.helper.make_model(graph)

output_np = input_np/input2_np
save_data_and_onnx_model_multy_inputs("div_test_1x1", [input_np, input2_np], output_np, onnx_model)
16 changes: 16 additions & 0 deletions testdata/dnn/onnx/models/div_test_1x1.onnx
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
:w

input1
input2output"Divdiv_testZ
input1


Z
input2


b
output


B