-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Support Blockwise Quantization #1181
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
6 tasks
asmorkalov
pushed a commit
to opencv/opencv
that referenced
this pull request
Jul 30, 2024
[GSoC] dnn: Blockwise quantization support #25644 This PR introduces blockwise quantization in DNN allowing the parsing of ONNX models quantized in blockwise style. In particular it modifies the `Quantize` and `Dequantize` operations. The related PR opencv/opencv_extra#1181 contains the test data. Additional notes: - The original quantization issue has been fixed. Previously, for 1D scale and zero-point, the operation applied was $y = int8(x/s - z)$ instead of $y = int8(x/s + z)$. Note that the operation was already correctly implemented when the scale and zero-point were scalars. The previous implementation failed the ONNX test cases, but now all have passed successfully. [Reference](https://github.com/onnx/onnx/blob/main/docs/Operators.md#QuantizeLinear) - the function `block_repeat` broadcasts scale and zero-point to the input shape. It repeats all the elements of a given axis n times. This function generalizes the behavior of `repeat` from the core module which is defined just for 2 axis assuming `Mat` has 2 dimensions. If appropriate and useful, you might consider moving `block_repeat` to the core module. - Now, the scale and zero-point can be taken as layer inputs. This increases the ONNX layers' coverage and enables us to run the ONNX test cases (previously disabled) being fully compliant with ONNX standards. Since they are now supported, I have enabled the test cases for: `test_dequantizelinear`, `test_dequantizelinear_axis`, `test_dequantizelinear_blocked`, `test_quantizelinear`, `test_quantizelinear_axis`, `test_quantizelinear_blocked` just in CPU backend. All of them pass successfully. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
Merged
fengyuentau
pushed a commit
to fengyuentau/opencv
that referenced
this pull request
Aug 15, 2024
[GSoC] dnn: Blockwise quantization support opencv#25644 This PR introduces blockwise quantization in DNN allowing the parsing of ONNX models quantized in blockwise style. In particular it modifies the `Quantize` and `Dequantize` operations. The related PR opencv/opencv_extra#1181 contains the test data. Additional notes: - The original quantization issue has been fixed. Previously, for 1D scale and zero-point, the operation applied was $y = int8(x/s - z)$ instead of $y = int8(x/s + z)$. Note that the operation was already correctly implemented when the scale and zero-point were scalars. The previous implementation failed the ONNX test cases, but now all have passed successfully. [Reference](https://github.com/onnx/onnx/blob/main/docs/Operators.md#QuantizeLinear) - the function `block_repeat` broadcasts scale and zero-point to the input shape. It repeats all the elements of a given axis n times. This function generalizes the behavior of `repeat` from the core module which is defined just for 2 axis assuming `Mat` has 2 dimensions. If appropriate and useful, you might consider moving `block_repeat` to the core module. - Now, the scale and zero-point can be taken as layer inputs. This increases the ONNX layers' coverage and enables us to run the ONNX test cases (previously disabled) being fully compliant with ONNX standards. Since they are now supported, I have enabled the test cases for: `test_dequantizelinear`, `test_dequantizelinear_axis`, `test_dequantizelinear_blocked`, `test_quantizelinear`, `test_quantizelinear_axis`, `test_quantizelinear_blocked` just in CPU backend. All of them pass successfully. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
thewoz
pushed a commit
to CobbsLab/OPENCV
that referenced
this pull request
Feb 13, 2025
[GSoC] dnn: Blockwise quantization support opencv#25644 This PR introduces blockwise quantization in DNN allowing the parsing of ONNX models quantized in blockwise style. In particular it modifies the `Quantize` and `Dequantize` operations. The related PR opencv/opencv_extra#1181 contains the test data. Additional notes: - The original quantization issue has been fixed. Previously, for 1D scale and zero-point, the operation applied was $y = int8(x/s - z)$ instead of $y = int8(x/s + z)$. Note that the operation was already correctly implemented when the scale and zero-point were scalars. The previous implementation failed the ONNX test cases, but now all have passed successfully. [Reference](https://github.com/onnx/onnx/blob/main/docs/Operators.md#QuantizeLinear) - the function `block_repeat` broadcasts scale and zero-point to the input shape. It repeats all the elements of a given axis n times. This function generalizes the behavior of `repeat` from the core module which is defined just for 2 axis assuming `Mat` has 2 dimensions. If appropriate and useful, you might consider moving `block_repeat` to the core module. - Now, the scale and zero-point can be taken as layer inputs. This increases the ONNX layers' coverage and enables us to run the ONNX test cases (previously disabled) being fully compliant with ONNX standards. Since they are now supported, I have enabled the test cases for: `test_dequantizelinear`, `test_dequantizelinear_axis`, `test_dequantizelinear_blocked`, `test_quantizelinear`, `test_quantizelinear_axis`, `test_quantizelinear_blocked` just in CPU backend. All of them pass successfully. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR contains the test data necessary to verify the correctness of blockwise quantization introduced in opencv/opencv#25644