Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 5 additions & 57 deletions gpt_oss/responses_api/inference/metal.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,68 +11,16 @@ def setup_model(checkpoint: str) -> Callable[[list[int], float], int]:
model = Model(checkpoint)
context = Context(model)

def lcp(cache: list[int], inp: list[int]) -> list[int]:
i = 0
max_len = min(len(cache), len(inp))
while i < max_len and cache[i] == inp[i]:
i += 1
return cache[:i]

tokens_so_far = []

def infer_next_token(
tokens: list[int], temperature: float = 0.0, new_request: bool = False
) -> int:
"""Infer next token using incremental LCP caching when possible."""
nonlocal tokens_so_far

# Fast path: first call or explicitly new request.
if new_request or not tokens_so_far:
context.reset()
for t in tokens:
context.append(t)
tokens_so_far = tokens.copy()
context.process()
return int(context.sample(temperature=temperature))

# Longest common prefix length
overlap = lcp(tokens_so_far, tokens)
ol = len(overlap)
prev_len = len(tokens_so_far)
cur_len = len(tokens)

diverged_midstream = (ol < prev_len) and (
ol < cur_len
) # mismatch not at the end

if diverged_midstream:
# safest: rebuild
context.reset()
for t in tokens:
context.append(t)
tokens_so_far = tokens.copy()
context.process()
return int(context.sample(temperature=temperature))

if cur_len > prev_len:
# pure extension (good for KV reuse)
extension = tokens[prev_len:]
for t in extension:
context.append(t)
tokens_so_far = tokens.copy()
context.process()
return int(context.sample(temperature=temperature))

if cur_len < prev_len:
# truncation/backspace; easiest correct behavior is rebuild
context.reset()
for t in tokens:
context.append(t)
tokens_so_far = tokens.copy()
context.process()
return int(context.sample(temperature=temperature))

# cur_len == prev_len and everything matches => no new tokens; just sample.
# Context handles LCP caching internally; if `tokens` matches the
# tokens in the KV cache, the KV cache is reused after reset+append.
context.reset()
for t in tokens:
context.append(t)
return int(context.sample(temperature=temperature))

return infer_next_token